An improved bat algorithm with artificial neural networks for classification problems
Metaheuristic search algorithms have been used for quite a while to optimally solve complex searching problems with ease. Nowadays, nature inspired swarm intelligent algorithms have become quite popular due to their propensity for finding optimal solutions with agility. Moreover several algorithms b...
محفوظ في:
المؤلف الرئيسي: | Rehman Gillani, Syed Muhammad Zubair |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/10043/1/24p%20SYED%20MUHAMMAD%20ZUBAIR%20REHMAN%20GILLANI.pdf http://eprints.uthm.edu.my/10043/2/SYED%20MUHAMMAD%20ZUBAIR%20REHMAN%20GILLANI%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/10043/3/SYED%20MUHAMMAD%20ZUBAIR%20REHMAN%20GILLANI%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Production quantity estimation using an improved artificial neural network
بواسطة: Dzakiyullah, Raden Nur Rachman
منشور في: (2015) -
Functional link neural network with modified bee-firefly learning algorithm for classification task
بواسطة: Mohmad Hassim, Yana Mazwin
منشور في: (2016) -
Bats echolocation-inspired algorithms for global optimisation problems
بواسطة: Nafrizuan, Mat Yahya
منشور في: (2016) -
Classification of water quality using artificial neural network
بواسطة: Sulaiman, Khadijah
منشور في: (2020) -
Improved cuckoo search based neural network learning algorithms for data classification
بواسطة: Abdullah, Abdullah
منشور في: (2014)