Pattern recognition for manufacturing process variation using integrated statistical process control – artificial neural network
Variation in manufacturing process is known to be a major source of poor quality products and variation control is essential in quality improvement. In bivariate cases, which involve two correlated quality variables, the traditional statistical process control (SPC) charts are known to be effective...
محفوظ في:
المؤلف الرئيسي: | Mohd Ariffin, Ahmad Azrizal |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/1279/2/AHMAD%20AZRIZAL%20MOHD%20ARIFFIN%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/1279/1/24p%20AHMAD%20AZRIZAL%20MOHD%20ARIFFIN.pdf http://eprints.uthm.edu.my/1279/3/AHMAD%20AZRIZAL%20MOHD%20ARIFFIN%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Identification of shift variation in bivariate process using pattern recognition technique
بواسطة: Mohd Haizan, Mohamad Azrul Azhad
منشور في: (2019) -
Design optimization for the two-stage bivariate pattern recognition scheme
بواسطة: Mokhtar, Mohd Shukri
منشور في: (2015) -
Sustainable manufacturing: optimization of electrical energy consumption in plastic injection molding process
بواسطة: Nur Anis, Othman
منشور في: (2015) -
Development of new lean manufacturing approach through people development and process improvement as a mediator in the libyan companies
بواسطة: M. A. Ataalah, Abdurezzag
منشور في: (2019) -
Modeling human performance using simulation at aircraft manufacturing system
بواسطة: Zunnadrah, Zolkepley
منشور في: (2021)