Study of artificial neural network scheme application in manufacturing industry for monitoring-diagnosis bivariate process variation
In manufacturing industries, process variation is known to be a major source of poor quality. As such, process monitoring and diagnosis is critical towards continuous quality improvement. This becomes more challenging when involving two or more correlated variables (multivariate). Process moni...
محفوظ في:
المؤلف الرئيسي: | Majid, Mariam |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/1531/1/24p%20MARIAM%20MAJID.pdf http://eprints.uthm.edu.my/1531/2/MARIAM%20MAJID%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/1531/3/MARIAM%20MAJID%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Synergistic artificial neural network scheme for monitoring and diagnosis of multivariate process variation in mean shifts
بواسطة: Marian, Mohd Fairuz
منشور في: (2014) -
A scheme for balanced monitoring and accurate diagnosis of bivariate process mean shifts
بواسطة: Masood, Ibrahim
منشور في: (2012) -
Production improvement in ACM manufacturing company using lean manufacturing approach
بواسطة: Sidek, Kamsidi @ Abd Malek
منشور في: (2013) -
TCP/IP-based control and monitoring of manufacturing system
بواسطة: Abrishamkar, Mehran
منشور في: (2013) -
Efficiency improvement of assembly line: case study of bus seat manufacturer
بواسطة: Yeoh, Kim Hao
منشور في: (2013)