Synergistic artificial neural network scheme for monitoring and diagnosis of multivariate process variation in mean shifts
In quality control, monitoring and diagnosis of multivariate out of control condition is essential in today’s manufacturing industries. The simplest case involves two correlated variables; for instance, monitoring value of temperature and pressure in our environment. Monitoring refers to the ide...
محفوظ في:
المؤلف الرئيسي: | Marian, Mohd Fairuz |
---|---|
التنسيق: | أطروحة |
اللغة: | English English |
منشور في: |
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/1540/1/24p%20MOHD%20FAIRUZ%20MARIAN.pdf http://eprints.uthm.edu.my/1540/2/MOHD%20FAIRUZ%20MARIAN%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A scheme for balanced monitoring and accurate diagnosis of bivariate process mean shifts
بواسطة: Masood, Ibrahim
منشور في: (2012) -
Study of artificial neural network scheme application in manufacturing industry for monitoring-diagnosis bivariate process variation
بواسطة: Majid, Mariam
منشور في: (2014) -
SPC charting procedure for monitoring of small and large shifts in process mean
بواسطة: Masood, Ibrahim
منشور في: (2004) -
Design optimization of ann-based pattern recognizer for multivariate quality control
بواسطة: Abdul Jamil, Muhamad Faizal
منشور في: (2013) -
Modeling and simulation of multivariable liquid process rig
بواسطة: Aldebrez, Fareg Mohamed
منشور في: (1996)