Active compliance control strategies for multifingered robot hand
Safety issues have to be enhanced when the robot hand is grasping objects of different shapes, sizes and stiffness. The inability to control the grasping force and finger stiffness can lead to unsafe grasping environment. Although many researches have been conducted to resolve the grasping issues...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English English |
Published: |
2018
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/160/1/24p%20AMIRUL%20SYAFIQ%20SADUN.pdf http://eprints.uthm.edu.my/160/2/AMIRUL%20SYAFIQ%20SADUN%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/160/3/AMIRUL%20SYAFIQ%20%20SADUN%20WATERMARK.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Safety issues have to be enhanced when the robot hand is grasping objects of
different shapes, sizes and stiffness. The inability to control the grasping force and
finger stiffness can lead to unsafe grasping environment. Although many researches
have been conducted to resolve the grasping issues, particularly for the object with
different shape, size and stiffness, the grasping control still requires further
improvement. Hence, the primary aim of this work is to assess and improve the safety
of the robot hand. One of the methods that allows a safe grasping is by employing an
active compliance control via the force and impedance control. The implementation of
force control considers the proportional–integral–derivative (PID) controller.
Meanwhile, the implementation of impedance control employs the integral slidingmode
controller (ISMC) and adaptive controller. A series of experiments and
simulations is used to demonstrate the fundamental principles of robot grasping.
Objects with different shape, size and stiffness are tested using a 3-Finger Adaptive
Robot Gripper. The work introduces the Modbus remote terminal unit [RTU] protocol,
a low-cost force sensor and the Arduino IO Package for a real-time hardware setup. It
is found that, the results of the force control via PID controller are feasible to maintain
the grasped object at certain positions, depending on the desired grasping force (i.e.,
1N and 8N). Meanwhile, the implementation of impedance control via ISMC and
adaptive controller yields multiple stiffness levels for the robot fingers and able to
reduce collision between the fingers and the object. However, it was found that the
adaptive controller produces better impedance control results as compared to the
ISMC, with a 33% efficiency improvement. This work lays important foundations for
long-term related research, particularly in the field of active compliance control that
can be beneficial to human–robot interaction (HRI). |
---|