Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)

Soil that is contaminated with heavy metals has become a major issue worldwide. However, proper remediation techniques such as stabilisation/solidification (S/S) method can be employed and is capable of controlling these heavy metals. Conventionally, the common S/S method used cement as binder on...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammad Azmi, Mohamad Azim
Format: Thesis
Language:English
English
English
Published: 2018
Subjects:
Online Access:http://eprints.uthm.edu.my/207/1/24p%20MOHAMAD%20AZIM%20MOHAMMAD%20AZMI.pdf
http://eprints.uthm.edu.my/207/2/MOHAMAD%20AZIM%20MOHAMMAD%20AZMI%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/207/3/MOHAMAD%20AZIM%20MOHAMMAD%20AZMI%20%20WATERMARK.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uthm-ep.207
record_format uketd_dc
spelling my-uthm-ep.2072021-07-06T08:24:58Z Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA) 2018-11 Mohammad Azmi, Mohamad Azim TD1020-1066 Hazardous substances and their disposal Soil that is contaminated with heavy metals has become a major issue worldwide. However, proper remediation techniques such as stabilisation/solidification (S/S) method can be employed and is capable of controlling these heavy metals. Conventionally, the common S/S method used cement as binder on remediating the contaminated soil particularly heavy metals. This research is to investigate the effect of physical and leachability of contaminated soil in S/S method when Sugarcane Bagasse Ash (SCBA) is added to remedy contaminated soil. Landfill contaminated soil was used to test the effectiveness of those binder. Cement was added at a proportion of 5%, 10%, 15% and 20% in sample weights without SCBA while in another sample; the cement was replaced by SCBA at a proportion of 2.5%, 5%, 7.5% and 10%. All samples are to be allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessing by conducting physical testing such as Unconfined Compression Strength, Water Absorption and Permeability test. In addition, leaching tests were performed to identify the leachate behavior of heavy metals during treatment. Three leaching tests were conducted and they were the Toxicity Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP) and Dynamic Leaching Test (DLT). Through the physical testing, samples containing 10% OPC mixed with 10% SCBA were found to improve the compressive strength, reduced the water absorption and water permeability measuring 1550 MPa, 17.94% and 4.41 x 10 -10 m/s respectively. In the same way, through the statistical analysis, the R-squared for UCS with respect to mixed design is high at 98%. However, the value for both water absorption and permeability recorded to be marginally low, compared to the value for strength at 89% and 88% respectively. Through the TCLP and SPLP test, results indicated that when SCBA added to OPC content in soil samples, less heavy metal been leached out from the S/S sample. In average, the satisfying result was shown by samples containing 10% OPC + 10% SCBA where reduction of heavy metals in final leachate is more than 90% for As, Cd, Cr, Pb and Zn. Through the Dynamic Leaching Test, sample containing 10% OPC +10% SCBA showed the satisfactory leachability index (Lx) at 9.17, 9.17, 8.81, 8.17 and 6.97 for As, Cd, Cr, Pb and Zn respectively. This indicates that the use of cement and SCBA as a binder was successful in remediating the contaminated soils through the S/S method. 2018-11 Thesis http://eprints.uthm.edu.my/207/ http://eprints.uthm.edu.my/207/1/24p%20MOHAMAD%20AZIM%20MOHAMMAD%20AZMI.pdf text en public http://eprints.uthm.edu.my/207/2/MOHAMAD%20AZIM%20MOHAMMAD%20AZMI%20COPYRIGHT%20DECLARATION.pdf text en staffonly http://eprints.uthm.edu.my/207/3/MOHAMAD%20AZIM%20MOHAMMAD%20AZMI%20%20WATERMARK.pdf text en validuser phd doctoral Universiti Tun Hussein Onn Malaysia Fakulti Kejuruteraan Awam dan Alam Bina
institution Universiti Tun Hussein Onn Malaysia
collection UTHM Institutional Repository
language English
English
English
topic TD1020-1066 Hazardous substances and their disposal
spellingShingle TD1020-1066 Hazardous substances and their disposal
Mohammad Azmi, Mohamad Azim
Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)
description Soil that is contaminated with heavy metals has become a major issue worldwide. However, proper remediation techniques such as stabilisation/solidification (S/S) method can be employed and is capable of controlling these heavy metals. Conventionally, the common S/S method used cement as binder on remediating the contaminated soil particularly heavy metals. This research is to investigate the effect of physical and leachability of contaminated soil in S/S method when Sugarcane Bagasse Ash (SCBA) is added to remedy contaminated soil. Landfill contaminated soil was used to test the effectiveness of those binder. Cement was added at a proportion of 5%, 10%, 15% and 20% in sample weights without SCBA while in another sample; the cement was replaced by SCBA at a proportion of 2.5%, 5%, 7.5% and 10%. All samples are to be allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessing by conducting physical testing such as Unconfined Compression Strength, Water Absorption and Permeability test. In addition, leaching tests were performed to identify the leachate behavior of heavy metals during treatment. Three leaching tests were conducted and they were the Toxicity Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP) and Dynamic Leaching Test (DLT). Through the physical testing, samples containing 10% OPC mixed with 10% SCBA were found to improve the compressive strength, reduced the water absorption and water permeability measuring 1550 MPa, 17.94% and 4.41 x 10 -10 m/s respectively. In the same way, through the statistical analysis, the R-squared for UCS with respect to mixed design is high at 98%. However, the value for both water absorption and permeability recorded to be marginally low, compared to the value for strength at 89% and 88% respectively. Through the TCLP and SPLP test, results indicated that when SCBA added to OPC content in soil samples, less heavy metal been leached out from the S/S sample. In average, the satisfying result was shown by samples containing 10% OPC + 10% SCBA where reduction of heavy metals in final leachate is more than 90% for As, Cd, Cr, Pb and Zn. Through the Dynamic Leaching Test, sample containing 10% OPC +10% SCBA showed the satisfactory leachability index (Lx) at 9.17, 9.17, 8.81, 8.17 and 6.97 for As, Cd, Cr, Pb and Zn respectively. This indicates that the use of cement and SCBA as a binder was successful in remediating the contaminated soils through the S/S method.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Mohammad Azmi, Mohamad Azim
author_facet Mohammad Azmi, Mohamad Azim
author_sort Mohammad Azmi, Mohamad Azim
title Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)
title_short Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)
title_full Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)
title_fullStr Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)
title_full_unstemmed Stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (SCBA)
title_sort stabilisation and solidification of contaminated soil using cement and sugarcane bagasse ash (scba)
granting_institution Universiti Tun Hussein Onn Malaysia
granting_department Fakulti Kejuruteraan Awam dan Alam Bina
publishDate 2018
url http://eprints.uthm.edu.my/207/1/24p%20MOHAMAD%20AZIM%20MOHAMMAD%20AZMI.pdf
http://eprints.uthm.edu.my/207/2/MOHAMAD%20AZIM%20MOHAMMAD%20AZMI%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/207/3/MOHAMAD%20AZIM%20MOHAMMAD%20AZMI%20%20WATERMARK.pdf
_version_ 1747830554013728768