Rough set approach for categorical data clustering
A few techniques of rough categorical data clustering exist to group objects having similar characteristics. However, the performance of the techniques is an issue due to low accuracy, high computational complexity and clusters purity. This work proposes a new technique called Maximum Dependen...
Saved in:
主要作者: | Herawan, Tutut |
---|---|
格式: | Thesis |
語言: | English English English |
出版: |
2010
|
主題: | |
在線閱讀: | http://eprints.uthm.edu.my/3609/1/24p%20TUTUT%20HERAWAN.pdf http://eprints.uthm.edu.my/3609/2/TUTUT%20HERAWAN%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/3609/3/TUTUT%20HERAWAN%20WATERMARK.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Feature selection for traditional Malay musical instrument sound classification using rough set
由: Senan, Norhalina
出版: (2013) -
Text Categorization Using Naive Bayes Algorithm
由: Wan Hazimah, Wan Ismail
出版: (2005) -
Data mining in network traffic using fuzzy clustering
由: Mohamad, Shamsul
出版: (2003) -
A relative tolerance relation of rough set with reduct and core approach, and application to incomplete information systems
由: Saedudin, Rd. Rohmat
出版: (2020) -
Integrated smoothed location model and data reduction approaches for multi variables classification
由: Hashibah, Hamid
出版: (2014)