Development of hippocampus MRI image segmentation algorithm for progression detection of alzheimer’s disease (AD)

Alzheimer's disease is becoming one of the most serious ailments that people face. Alzheimer's disease primarily affects those over the age of 65. is defined by the death of brain cells, which results in memory loss. as well as a lack of judgment, linguistic abilities, and decision-making...

Full description

Saved in:
Bibliographic Details
Main Author: Gilani Mohamed, Mohamed Ahmed
Format: Thesis
Language:English
English
English
Published: 2022
Subjects:
Online Access:http://eprints.uthm.edu.my/6981/1/24p%20MOHAMED%20AHMED%20GILANI%20MOHAMED.pdf
http://eprints.uthm.edu.my/6981/2/MOHAMED%20AHMED%20GILANI%20MOHAMED%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/6981/3/MOHAMED%20AHMED%20GILANI%20MOHAMED%20WATERMARK.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer's disease is becoming one of the most serious ailments that people face. Alzheimer's disease primarily affects those over the age of 65. is defined by the death of brain cells, which results in memory loss. as well as a lack of judgment, linguistic abilities, and decision-making capability Furthermore, no research has been conducted on developing a monitoring system for Alzheimer's disease that can continuously monitor Alzheimer's patients to identify any signs of development. Current research focuses mostly on early diagnosis and does not include disease monitoring. Monitoring is critical since it allows doctors to assess the disease development of Alzheimer's patients quantitatively. This study indicates developing an algorithm for detecting and progressing through the hippocampus of patients with Alzheimer's disease in MRI images. The active contour method (Chan-Vese) was utilized to extract the ROI parameters (hippocampus). The active contours algorithm deforms an item's initial border in an image to latch onto typical features inside the region of interest given an approximation of the object's perimeter. This is constantly stretched until it reaches the ROI's boundary. The interactive area selection approach is used to allow the user to determine the ROI depending on their needs. The algorithm will be applied once the ROI has been specified. The algorithm will be able to identify the parameters, such as the number of pixels, area pixels, and mean value, by extracting the hippocampal shape. The extraction of parameters will allow us to determine the extent of the patient's Alzheimer's progression. As a result, the study was successful in developing a semi-automated and robust model based on the Chan-Vese segmentation methodology, where it could observe the shrinking of the patient brain by the progression method using the total pixels of the hippocampus and its area by getting decreased at the second visit, one of the results showed at the first visit the total number of the pixels was 707 then at the second visit it shows 650 so the progression percentage 9%, and the proposed method produced promising segmentation results. In addition, a graphical user interface (GUI) was created to identify the progression percentage. As a future plan, this project can use machine learning to train the data for auto-detection for the hippocampus which will be significantly robust and more effective.