Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water

Discharge of untreated industrial effluents containing heavy metals and organics is hazardous to the environment because of their toxicity and persistent nature. At the same time, agricultural waste poses disposal challenges, which can be converted into value added products like adsorbents that coul...

Full description

Saved in:
Bibliographic Details
Main Author: Garba, Abdurrahman
Format: Thesis
Language:English
English
English
Published: 2017
Subjects:
Online Access:http://eprints.uthm.edu.my/7859/2/24p%20ABDURRAHMAN%20GARBA.pdf
http://eprints.uthm.edu.my/7859/1/ABDURRAHMAN%20GARBA%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/7859/3/ABDURRAHMAN%20GARBA%20WATERMARK.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uthm-ep.7859
record_format uketd_dc
spelling my-uthm-ep.78592022-10-17T06:17:18Z Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water 2017-02 Garba, Abdurrahman QD Chemistry QD146-197 Inorganic chemistry Discharge of untreated industrial effluents containing heavy metals and organics is hazardous to the environment because of their toxicity and persistent nature. At the same time, agricultural waste poses disposal challenges, which can be converted into value added products like adsorbents that could serve as tools for contaminants abatement. Previous findings proved that, adsorption was a sustainable, economical and lucrative separation technique for the removal of such contaminants. This thesis presents the fabrication of a filter for the removal of organics and heavy metals in water which was prepared from treated rice husk and modified activated carbon (AC). The analysis of AC via Brunauer-Emmett-Teller (BET) surface area and scanning electron microscopy evidenced porosity of 707 m2/g as surface and a pore volume of 0.31 cm3/g. The elemental and thermogravimetric analysis proved that AC contain 48. 7% carbon, while the Fourier transform infrared spectroscopy shows that the surface contains functional groups such as O-H, C=C, C-O, C-O-C and C-H. The experimental results were fitted with fixed-bed adsorption models to understand the adsorbate-adsorbent relationship. Fixed-bed adsorption studies show that, the highest adsorption capacity of 248.2 mg/g and 234.12 mg/g for BPA and phenol respectively was obtained at 250 mg/L concentration and 9 mL/min flow rate. The results also revealed 73 % and 87 % as the highest removal capacity for heavy metal Pb and Cd respectively at 20 mg/L concentration and 9 mL/min flow rate. For sustainability, regeneration of the spent AC was carried out in a microwave which showed 75% yield after five cycles, while the rice husk was eluted with 0.lM hydrogen chloride and 37.8% efficiency was achieved after three successive cycles. The UV lamp incorporated in the filter shows total inactivation of E. coli after 7 minutes. 2017-02 Thesis http://eprints.uthm.edu.my/7859/ http://eprints.uthm.edu.my/7859/2/24p%20ABDURRAHMAN%20GARBA.pdf text en public http://eprints.uthm.edu.my/7859/1/ABDURRAHMAN%20GARBA%20COPYRIGHT%20DECLARATION.pdf text en staffonly http://eprints.uthm.edu.my/7859/3/ABDURRAHMAN%20GARBA%20WATERMARK.pdf text en validuser phd doctoral Universiti Tun Hussein Onn Malaysia Fakulti Sains Teknologi dan Pembangunan Insan
institution Universiti Tun Hussein Onn Malaysia
collection UTHM Institutional Repository
language English
English
English
topic QD Chemistry
QD146-197 Inorganic chemistry
spellingShingle QD Chemistry
QD146-197 Inorganic chemistry
Garba, Abdurrahman
Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
description Discharge of untreated industrial effluents containing heavy metals and organics is hazardous to the environment because of their toxicity and persistent nature. At the same time, agricultural waste poses disposal challenges, which can be converted into value added products like adsorbents that could serve as tools for contaminants abatement. Previous findings proved that, adsorption was a sustainable, economical and lucrative separation technique for the removal of such contaminants. This thesis presents the fabrication of a filter for the removal of organics and heavy metals in water which was prepared from treated rice husk and modified activated carbon (AC). The analysis of AC via Brunauer-Emmett-Teller (BET) surface area and scanning electron microscopy evidenced porosity of 707 m2/g as surface and a pore volume of 0.31 cm3/g. The elemental and thermogravimetric analysis proved that AC contain 48. 7% carbon, while the Fourier transform infrared spectroscopy shows that the surface contains functional groups such as O-H, C=C, C-O, C-O-C and C-H. The experimental results were fitted with fixed-bed adsorption models to understand the adsorbate-adsorbent relationship. Fixed-bed adsorption studies show that, the highest adsorption capacity of 248.2 mg/g and 234.12 mg/g for BPA and phenol respectively was obtained at 250 mg/L concentration and 9 mL/min flow rate. The results also revealed 73 % and 87 % as the highest removal capacity for heavy metal Pb and Cd respectively at 20 mg/L concentration and 9 mL/min flow rate. For sustainability, regeneration of the spent AC was carried out in a microwave which showed 75% yield after five cycles, while the rice husk was eluted with 0.lM hydrogen chloride and 37.8% efficiency was achieved after three successive cycles. The UV lamp incorporated in the filter shows total inactivation of E. coli after 7 minutes.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Garba, Abdurrahman
author_facet Garba, Abdurrahman
author_sort Garba, Abdurrahman
title Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
title_short Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
title_full Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
title_fullStr Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
title_full_unstemmed Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
title_sort modified rice husk and activated carbon filters for the removal of organics and heavy metals in water
granting_institution Universiti Tun Hussein Onn Malaysia
granting_department Fakulti Sains Teknologi dan Pembangunan Insan
publishDate 2017
url http://eprints.uthm.edu.my/7859/2/24p%20ABDURRAHMAN%20GARBA.pdf
http://eprints.uthm.edu.my/7859/1/ABDURRAHMAN%20GARBA%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/7859/3/ABDURRAHMAN%20GARBA%20WATERMARK.pdf
_version_ 1747831201541914624