Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus

The interest in microwave technology for biological applications using metamaterial as sensing element is increasing due to strong electric field compared to traditional microwave sensors. The operation at millimetre-wave frequencies further enhances the field intensity leading to increased sensitiv...

Full description

Saved in:
Bibliographic Details
Main Author: Qureshi, Suhail Asghar
Format: Thesis
Language:English
English
English
Published: 2022
Subjects:
Online Access:http://eprints.uthm.edu.my/8353/2/24p%20SUHAIL%20ASGHAR%20QURESHI.pdf
http://eprints.uthm.edu.my/8353/1/SUHAIL%20ASGHAR%20QURESHI%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/8353/3/SUHAIL%20ASGHAR%20QURESHI%20WATERMARK.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uthm-ep.8353
record_format uketd_dc
spelling my-uthm-ep.83532023-02-20T07:26:07Z Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus 2022-01 Qureshi, Suhail Asghar TA Engineering (General). Civil engineering (General) The interest in microwave technology for biological applications using metamaterial as sensing element is increasing due to strong electric field compared to traditional microwave sensors. The operation at millimetre-wave frequencies further enhances the field intensity leading to increased sensitivity, which can be used in the detection of the dengue virus and it can be vital in controlling the disease. The millimetre-wave metamaterial-based resonators are presented in this thesis to characterise blood’s dielectric properties in the case of the dengue virus. The correlation coefficient, t-test, and cross-correlation were applied on S11 phase responses. During measurements, tap water was used instead of blood, and methylated alcohol was added to the water to lower its permittivity, mimicking the dielectric response of infected blood. First, a single-layered design with an engraved space to hold blood samples is presented as a proof of concept for blood-sensing and the application of statistical models. This sensor showed a resonance shift of 0.22 GHz due to an 8 unit decrease in blood’s permittivity. In contrast, three (3) designs of two-layered sensors are proposed with replaceable sensing layers suitable for repeated measurements. Double-layered Sensor 1 showed resonance at 36.28 GHz for normal blood. The perturbation observed was 0.88 GHz when the blood’s permittivity was reduced by 8 units. Sensor 2 showed a resonance shift from 27.22 GHz to 29.82 GHz with the 8 unit change in blood’s permittivity. Sensor 3 showed a lesser resonance shift, which is 0.44 GHz. However, the double-layered Sensor 3 has the edge over other designs in terms of its performance in all statistical methods. In double-layered sensors, the replaceable sensing layer provides quick and accurate results. As a result, the sensors presented here can detect the dengue virus using a simple finger-prick blood extraction method. 2022-01 Thesis http://eprints.uthm.edu.my/8353/ http://eprints.uthm.edu.my/8353/2/24p%20SUHAIL%20ASGHAR%20QURESHI.pdf text en public http://eprints.uthm.edu.my/8353/1/SUHAIL%20ASGHAR%20QURESHI%20COPYRIGHT%20DECLARATION.pdf text en staffonly http://eprints.uthm.edu.my/8353/3/SUHAIL%20ASGHAR%20QURESHI%20WATERMARK.pdf text en validuser mphil masters Universiti Tun Hussein Onn Malaysia Fakulti Kejuruteraan Elektrik dan Elektronik
institution Universiti Tun Hussein Onn Malaysia
collection UTHM Institutional Repository
language English
English
English
topic TA Engineering (General)
Civil engineering (General)
spellingShingle TA Engineering (General)
Civil engineering (General)
Qureshi, Suhail Asghar
Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
description The interest in microwave technology for biological applications using metamaterial as sensing element is increasing due to strong electric field compared to traditional microwave sensors. The operation at millimetre-wave frequencies further enhances the field intensity leading to increased sensitivity, which can be used in the detection of the dengue virus and it can be vital in controlling the disease. The millimetre-wave metamaterial-based resonators are presented in this thesis to characterise blood’s dielectric properties in the case of the dengue virus. The correlation coefficient, t-test, and cross-correlation were applied on S11 phase responses. During measurements, tap water was used instead of blood, and methylated alcohol was added to the water to lower its permittivity, mimicking the dielectric response of infected blood. First, a single-layered design with an engraved space to hold blood samples is presented as a proof of concept for blood-sensing and the application of statistical models. This sensor showed a resonance shift of 0.22 GHz due to an 8 unit decrease in blood’s permittivity. In contrast, three (3) designs of two-layered sensors are proposed with replaceable sensing layers suitable for repeated measurements. Double-layered Sensor 1 showed resonance at 36.28 GHz for normal blood. The perturbation observed was 0.88 GHz when the blood’s permittivity was reduced by 8 units. Sensor 2 showed a resonance shift from 27.22 GHz to 29.82 GHz with the 8 unit change in blood’s permittivity. Sensor 3 showed a lesser resonance shift, which is 0.44 GHz. However, the double-layered Sensor 3 has the edge over other designs in terms of its performance in all statistical methods. In double-layered sensors, the replaceable sensing layer provides quick and accurate results. As a result, the sensors presented here can detect the dengue virus using a simple finger-prick blood extraction method.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Qureshi, Suhail Asghar
author_facet Qureshi, Suhail Asghar
author_sort Qureshi, Suhail Asghar
title Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
title_short Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
title_full Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
title_fullStr Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
title_full_unstemmed Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
title_sort double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus
granting_institution Universiti Tun Hussein Onn Malaysia
granting_department Fakulti Kejuruteraan Elektrik dan Elektronik
publishDate 2022
url http://eprints.uthm.edu.my/8353/2/24p%20SUHAIL%20ASGHAR%20QURESHI.pdf
http://eprints.uthm.edu.my/8353/1/SUHAIL%20ASGHAR%20QURESHI%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/8353/3/SUHAIL%20ASGHAR%20QURESHI%20WATERMARK.pdf
_version_ 1776103326892425216