Improved classifier chain methods based on heuristic optimization techniques for multi-label classification problem
This thesis is about proposing multi-label classification (MLC) techniques for classification applications. In MLC, the task is to develop models that could predict multiple class labels
محفوظ في:
المؤلف الرئيسي: | Oyekunle, Adeleke Abdullahi |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/8378/1/24p%20ADELEKE%20ABDULLAHI%20OYEKUNLE.pdf http://eprints.uthm.edu.my/8378/2/ADELEKE%20ABDULLAHI%20OYEKUNLE%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/8378/3/ADELEKE%20ABDULLAHI%20OYEKUNLE%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A guided artificial bee colony (GABC) heuristic for permutation flowshop scheduling problem (PFSP)
بواسطة: Sidek, Noor Azizah
منشور في: (2021) -
Heuristics method for truck disassembly process
بواسطة: Yeoh, Kim Hao
منشور في: (2020) -
Dynamic weighted idle time heuristic for flowshop scheduling
بواسطة: Zainudin, Amira Syuhada
منشور في: (2017) -
The moderation of smart industry technology on the relationship between supply chain management practices and competitive advantage in the Dubai Electricity and Water Authority
بواسطة: Durmohamed, Yousef Abdulrahman Mohamed
منشور في: (2022) -
Supply Chain Management Practices in Malaysia Oil and Gas Industry: A Case Study of Murphy Sarawak Oil Company Ltd.
بواسطة: Noor Rafhati, Romaiha
منشور في: (2011)