Improved classifier chain methods based on heuristic optimization techniques for multi-label classification problem
This thesis is about proposing multi-label classification (MLC) techniques for classification applications. In MLC, the task is to develop models that could predict multiple class labels
Saved in:
主要作者: | Oyekunle, Adeleke Abdullahi |
---|---|
格式: | Thesis |
語言: | English English English |
出版: |
2022
|
主題: | |
在線閱讀: | http://eprints.uthm.edu.my/8378/1/24p%20ADELEKE%20ABDULLAHI%20OYEKUNLE.pdf http://eprints.uthm.edu.my/8378/2/ADELEKE%20ABDULLAHI%20OYEKUNLE%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/8378/3/ADELEKE%20ABDULLAHI%20OYEKUNLE%20WATERMARK.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A guided artificial bee colony (GABC) heuristic for permutation flowshop scheduling problem (PFSP)
由: Sidek, Noor Azizah
出版: (2021) -
Heuristics method for truck disassembly process
由: Yeoh, Kim Hao
出版: (2020) -
Dynamic weighted idle time heuristic for flowshop scheduling
由: Zainudin, Amira Syuhada
出版: (2017) -
The moderation of smart industry technology on the relationship between supply chain management practices and competitive advantage in the Dubai Electricity and Water Authority
由: Durmohamed, Yousef Abdulrahman Mohamed
出版: (2022) -
Supply Chain Management Practices in Malaysia Oil and Gas Industry: A Case Study of Murphy Sarawak Oil Company Ltd.
由: Noor Rafhati, Romaiha
出版: (2011)