New rough set based maximum partitioning attribute algorithm for categorical data clustering
Clustering a set of data into homogeneous groups is a fundamental operation in data mining. Recently, consideration has been put on categorical data clustering, where the data set consists of non-numerical attributes. However, implementing several existing categorical clustering algorithms is challe...
Saved in:
主要作者: | Jomah Baroud, Muftah Mohamed |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2022
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/101497/1/MuftahMohamedJomahBaroudPSC2022.pdf.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Rough set approach for categorical data clustering
由: Herawan, Tutut
出版: (2010) -
Empirical analysis of rough set categorical clustering techniques based on rough purity and value set
由: Uddin, Jamal
出版: (2017) -
The new efficient and accurate attribute-oriented clustering algorithms for categorical data
由: Qin, Hongwu
出版: (2012) -
A new soft set-based technique for clustering attribute selection in educational data mining
由: Suhirman, .
出版: (2016) -
Clustering chemical data set using particle swarm optimization based algorithm
由: Triyono, Triyono
出版: (2008)