Void avoidance opportunistic routing density rank based for underwater sensor networks

Currently, the Underwater Sensor Networks (UWSNs) is mainly an attractive area due to its technological ability to gather valuable data from underwater environments such as tsunami monitoring sensors, military tactical applications, and environmental monitoring. However, UWSNs are suffering from lim...

Full description

Saved in:
Bibliographic Details
Main Author: Ismail, Nasarudin
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://eprints.utm.my/id/eprint/101582/1/NasarudinIsmailPSC2021.pdf.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.101582
record_format uketd_dc
spelling my-utm-ep.1015822023-06-26T06:46:30Z Void avoidance opportunistic routing density rank based for underwater sensor networks 2022 Ismail, Nasarudin QA75 Electronic computers. Computer science Currently, the Underwater Sensor Networks (UWSNs) is mainly an attractive area due to its technological ability to gather valuable data from underwater environments such as tsunami monitoring sensors, military tactical applications, and environmental monitoring. However, UWSNs are suffering from limited energy, high packet loss, and the use of acoustic communication which have very limited bandwidth and slow transmission. In UWSNs, the energy consumption used is 125 times more during the forwarding of the packet data from source to destination as compare to during receiving data. For this reason, many researchers are keen to design an energy-efficient routing protocol to minimize the energy consumption in UWSNs while at the same time provide adequate packet delivery ratio and less cumulative delay. As such, the opportunistic routing (OR) is the most promising method to be used in UWSNs due to its unique characteristics such as high path loss, dynamic topology, high energy consumption, and high propagation delay. However, the OR algorithm had also suffered from as higher traffic load for selection next forwarding nodes in the progression area, which suppressed the redundant forwarding packet and caused communication void. There are three new proposed algorithms introduced to address all three issues which resulted from using the OR approach in UWSNs. Firstly, the higher traffic load for selection next forwarding nodes in the problematic progression area problem was addressed by using the Opportunistic Routing Density Based (ORDB) algorithm to minimize the traffic load by introducing a beaconless routing to update the neighbor node information protocol. Secondly, the algorithm Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with redundant packet forwarding by introducing a new method to reduce the redundant packet forwarding while in dense or sparse conditions to improve the energy consumption effectively. Finally, the algorithm Void Avoidance Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with the communication void by introducing a simple method to detect a void node and avoid it during the forwarding process. Simulation results showed that ORDB has improved the network performance in terms of energy tax average (25%, 40%), packet delivery ratio (43%, 23%), and cumulative delay (67%, -42%) compared to DBR and UWFlooding routing protocols. While for ORDRB, the network performance improved in terms of energy tax average (0.9%, 53%, 62%), packet delivery ratio (100%, 83%, 58%) and cumulative delay (-270%, -94%, 55%) compared to WDFAD-DBR, DBR and UWFlooding. Lastly, for VAORDRB, the network performance improved in terms of energy tax average (3%, 8%), packet delivery ratio (167%, 261%), and cumulative delay (68%, 57%) compared to EVA-DBR and WDFAD-DBR. Based on the findings of this study, the protocol VAORDRB is a suitable total solution to reduce the cumulative delay and increase the packet delivery ratio in sparse and dense network deployment. 2022 Thesis http://eprints.utm.my/id/eprint/101582/ http://eprints.utm.my/id/eprint/101582/1/NasarudinIsmailPSC2021.pdf.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:150590 phd doctoral Universiti Teknologi Malaysia Faculty of Engineering - School of Computing
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA75 Electronic computers
Computer science
spellingShingle QA75 Electronic computers
Computer science
Ismail, Nasarudin
Void avoidance opportunistic routing density rank based for underwater sensor networks
description Currently, the Underwater Sensor Networks (UWSNs) is mainly an attractive area due to its technological ability to gather valuable data from underwater environments such as tsunami monitoring sensors, military tactical applications, and environmental monitoring. However, UWSNs are suffering from limited energy, high packet loss, and the use of acoustic communication which have very limited bandwidth and slow transmission. In UWSNs, the energy consumption used is 125 times more during the forwarding of the packet data from source to destination as compare to during receiving data. For this reason, many researchers are keen to design an energy-efficient routing protocol to minimize the energy consumption in UWSNs while at the same time provide adequate packet delivery ratio and less cumulative delay. As such, the opportunistic routing (OR) is the most promising method to be used in UWSNs due to its unique characteristics such as high path loss, dynamic topology, high energy consumption, and high propagation delay. However, the OR algorithm had also suffered from as higher traffic load for selection next forwarding nodes in the progression area, which suppressed the redundant forwarding packet and caused communication void. There are three new proposed algorithms introduced to address all three issues which resulted from using the OR approach in UWSNs. Firstly, the higher traffic load for selection next forwarding nodes in the problematic progression area problem was addressed by using the Opportunistic Routing Density Based (ORDB) algorithm to minimize the traffic load by introducing a beaconless routing to update the neighbor node information protocol. Secondly, the algorithm Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with redundant packet forwarding by introducing a new method to reduce the redundant packet forwarding while in dense or sparse conditions to improve the energy consumption effectively. Finally, the algorithm Void Avoidance Opportunistic Routing Density Rank Based (ORDRB) was developed to deal with the communication void by introducing a simple method to detect a void node and avoid it during the forwarding process. Simulation results showed that ORDB has improved the network performance in terms of energy tax average (25%, 40%), packet delivery ratio (43%, 23%), and cumulative delay (67%, -42%) compared to DBR and UWFlooding routing protocols. While for ORDRB, the network performance improved in terms of energy tax average (0.9%, 53%, 62%), packet delivery ratio (100%, 83%, 58%) and cumulative delay (-270%, -94%, 55%) compared to WDFAD-DBR, DBR and UWFlooding. Lastly, for VAORDRB, the network performance improved in terms of energy tax average (3%, 8%), packet delivery ratio (167%, 261%), and cumulative delay (68%, 57%) compared to EVA-DBR and WDFAD-DBR. Based on the findings of this study, the protocol VAORDRB is a suitable total solution to reduce the cumulative delay and increase the packet delivery ratio in sparse and dense network deployment.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Ismail, Nasarudin
author_facet Ismail, Nasarudin
author_sort Ismail, Nasarudin
title Void avoidance opportunistic routing density rank based for underwater sensor networks
title_short Void avoidance opportunistic routing density rank based for underwater sensor networks
title_full Void avoidance opportunistic routing density rank based for underwater sensor networks
title_fullStr Void avoidance opportunistic routing density rank based for underwater sensor networks
title_full_unstemmed Void avoidance opportunistic routing density rank based for underwater sensor networks
title_sort void avoidance opportunistic routing density rank based for underwater sensor networks
granting_institution Universiti Teknologi Malaysia
granting_department Faculty of Engineering - School of Computing
publishDate 2022
url http://eprints.utm.my/id/eprint/101582/1/NasarudinIsmailPSC2021.pdf.pdf
_version_ 1776100732121907200