Realization of analog signal processing modules using carbon nanotube field effect transistors

This thesis presents the realization and performance analysis of several carbon nanotube field effect transistor (CNTFET) based analog signal processing (ASP) modules. CNTFET is predicted as a possible successor to conventional silicon complementary metal oxide semiconductor (CMOS), which has reache...

Full description

Saved in:
Bibliographic Details
Main Author: Masud, Muhammad Idrees
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://eprints.utm.my/id/eprint/101710/1/MuhammadIdreesMasudPSKE2022.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.101710
record_format uketd_dc
spelling my-utm-ep.1017102023-07-10T09:17:20Z Realization of analog signal processing modules using carbon nanotube field effect transistors 2022 Masud, Muhammad Idrees TK Electrical engineering. Electronics Nuclear engineering This thesis presents the realization and performance analysis of several carbon nanotube field effect transistor (CNTFET) based analog signal processing (ASP) modules. CNTFET is predicted as a possible successor to conventional silicon complementary metal oxide semiconductor (CMOS), which has reached its scaling limits. The CMOS based ASP modules face significant challenges at deep nanoscale, resulting in severe performance degradations due to short channel effects. The main goal of this work is to realize CNTFET active building blocks (ABBs), and then to utilize these ABBs for realization of low-voltage, low-power, and high-frequency ASP modules. The proposed ABBs have low power dissipation, reduced parasitic components, and minimum number of CNTFETs. The proposed modules are active inductor (AI), first-order phase shifter, and second-order phase shifter. This research proposes a new CNTFET based grounded AI (GAI) circuit with high self-resonance frequency (SRF), wide tunable inductance range, and high quality factor. Simulation results demonstrate that the GAI offers tunable inductance from 4.4 nH to 287.4 nH with a maximum SRF of 101 GHz. It consumes very low power dissipation of 0.337 mW. In comparison to high performance available GAI circuits, the proposed GAI shows 34% reduction in power dissipation and nine times higher SRF. A highfrequency low-noise amplifier (LNA) circuit is also designed by utilizing the proposed GAI to showcase its application. The simulation result shows high frequency bandwidth of 17.5 GHz to 57 GHz, 15.9 dB maximum voltage gain, better than -10 dB input matching, and less than 3 dB noise figure. This research also proposes a compact wideband first-order phase shifter (FOPS) and active-only FOPS (AOFOPS). Simulation results demonstrate the FOPS has a tunable pole frequency range between 1.913 GHz and 40.2 GHz, input and output voltage noises of 4.402 nV/VHz and 4.414 nV/VH z respectively, and power dissipation of 0.4862 mW. The AOFOPS circuit also offers a wide tunable range of pole frequency between 34.2 GHz to 56.4 GHz with input noise and output noise of 6.822 nV/VHz and 6.761 nV/VHz respectively, and power dissipation of only 0.0338 mW. The AOFOPS dissipates 12.40 times less power in comparison to state-of-art FOPS circuits. This work also proposes active-only second-order phase shifter. The proposed circuit provides a tunable pole frequency between 16.2 GHz to 42.5 GHz, with input and output noises of 21.698 nV/VHz and 21.593 nV/VHz respectively, while consuming 0.2256 mW power. All circuit performances are verified through HSPICE simulation by utilizing the Stanford CNTFET model at 16 nm technology node with supply voltage of 0.7 V. 2022 Thesis http://eprints.utm.my/id/eprint/101710/ http://eprints.utm.my/id/eprint/101710/1/MuhammadIdreesMasudPSKE2022.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:149251 phd doctoral Universiti Teknologi Malaysia, Faculty of Engineering - School of Electrical Engineering Faculty of Engineering - School of Electrical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TK Electrical engineering
Electronics Nuclear engineering
spellingShingle TK Electrical engineering
Electronics Nuclear engineering
Masud, Muhammad Idrees
Realization of analog signal processing modules using carbon nanotube field effect transistors
description This thesis presents the realization and performance analysis of several carbon nanotube field effect transistor (CNTFET) based analog signal processing (ASP) modules. CNTFET is predicted as a possible successor to conventional silicon complementary metal oxide semiconductor (CMOS), which has reached its scaling limits. The CMOS based ASP modules face significant challenges at deep nanoscale, resulting in severe performance degradations due to short channel effects. The main goal of this work is to realize CNTFET active building blocks (ABBs), and then to utilize these ABBs for realization of low-voltage, low-power, and high-frequency ASP modules. The proposed ABBs have low power dissipation, reduced parasitic components, and minimum number of CNTFETs. The proposed modules are active inductor (AI), first-order phase shifter, and second-order phase shifter. This research proposes a new CNTFET based grounded AI (GAI) circuit with high self-resonance frequency (SRF), wide tunable inductance range, and high quality factor. Simulation results demonstrate that the GAI offers tunable inductance from 4.4 nH to 287.4 nH with a maximum SRF of 101 GHz. It consumes very low power dissipation of 0.337 mW. In comparison to high performance available GAI circuits, the proposed GAI shows 34% reduction in power dissipation and nine times higher SRF. A highfrequency low-noise amplifier (LNA) circuit is also designed by utilizing the proposed GAI to showcase its application. The simulation result shows high frequency bandwidth of 17.5 GHz to 57 GHz, 15.9 dB maximum voltage gain, better than -10 dB input matching, and less than 3 dB noise figure. This research also proposes a compact wideband first-order phase shifter (FOPS) and active-only FOPS (AOFOPS). Simulation results demonstrate the FOPS has a tunable pole frequency range between 1.913 GHz and 40.2 GHz, input and output voltage noises of 4.402 nV/VHz and 4.414 nV/VH z respectively, and power dissipation of 0.4862 mW. The AOFOPS circuit also offers a wide tunable range of pole frequency between 34.2 GHz to 56.4 GHz with input noise and output noise of 6.822 nV/VHz and 6.761 nV/VHz respectively, and power dissipation of only 0.0338 mW. The AOFOPS dissipates 12.40 times less power in comparison to state-of-art FOPS circuits. This work also proposes active-only second-order phase shifter. The proposed circuit provides a tunable pole frequency between 16.2 GHz to 42.5 GHz, with input and output noises of 21.698 nV/VHz and 21.593 nV/VHz respectively, while consuming 0.2256 mW power. All circuit performances are verified through HSPICE simulation by utilizing the Stanford CNTFET model at 16 nm technology node with supply voltage of 0.7 V.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Masud, Muhammad Idrees
author_facet Masud, Muhammad Idrees
author_sort Masud, Muhammad Idrees
title Realization of analog signal processing modules using carbon nanotube field effect transistors
title_short Realization of analog signal processing modules using carbon nanotube field effect transistors
title_full Realization of analog signal processing modules using carbon nanotube field effect transistors
title_fullStr Realization of analog signal processing modules using carbon nanotube field effect transistors
title_full_unstemmed Realization of analog signal processing modules using carbon nanotube field effect transistors
title_sort realization of analog signal processing modules using carbon nanotube field effect transistors
granting_institution Universiti Teknologi Malaysia, Faculty of Engineering - School of Electrical Engineering
granting_department Faculty of Engineering - School of Electrical Engineering
publishDate 2022
url http://eprints.utm.my/id/eprint/101710/1/MuhammadIdreesMasudPSKE2022.pdf
_version_ 1776100753480351744