Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor
Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, a...
Saved in:
主要作者: | |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2020
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/102053/1/ArmanAbdallaAliMFS2020.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
id |
my-utm-ep.102053 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Teknologi Malaysia |
collection |
UTM Institutional Repository |
language |
English |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Ali, Arman Abdalla Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
description |
Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, anticancer, antioxidant including AChE inhibition activities. Super-activation of cholinesterase (acetylcholinesterase) is linked to various neurological problems most precisely Alzheimer’s disease (AD), which leads to senile dementia. Therefore, cholinesterase (AChE) inhibition is considered as a promising strategy for the treatment of Alzheimer’s disease. For this purpose, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential. In the first step of this study 1-(4-(benzyloxy)phenyl)ethan-1-one (51) was successfully synthesized by benzylation of 4-hydroxy acetophenone with a yield of 88.49% as a precursor to synthesize a series of chalcone derivatives. Then, the precursor was reacted with benzaldehyde derivatives (52a-f) with different substituent groups on its para position (4-H, 4-Br, 4-NO2, 4-isopropyl, 4-OCH3, and 4-Cl), respectively, by base-catalyzed Claisen-Schmidt condensation reaction to produce a series of new chalcone derivatives (53a-f). The yield of synthesized compounds were (50-58%), and their molecular structures were confirmed using IR, 1H NMR and 13C NMR analysis. The synthesized chalcone derivatives (53a-f) were tested against AChE. All compounds showed good activity in AChE inhibition. Moreover, compounds with the presence of electron-withdrawing groups (53b, 53c and 53f) showed excellent activity in AChE inhibition, Among them, compound (53c) showed the most potent activity (89.44%) in acetylcholinesterase inhibition which quite near from the result of the standard Galantamine (94.11%).Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, anticancer, antioxidant including AChE inhibition activities. Super-activation of cholinesterase (acetylcholinesterase) is linked to various neurological problems most precisely Alzheimer’s disease (AD), which leads to senile dementia. Therefore, cholinesterase (AChE) inhibition is considered as a promising strategy for the treatment of Alzheimer’s disease. For this purpose, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential. In the first step of this study 1-(4-(benzyloxy)phenyl)ethan-1-one (51) was successfully synthesized by benzylation of 4-hydroxy acetophenone with a yield of 88.49% as a precursor to synthesize a series of chalcone derivatives. Then, the precursor was reacted with benzaldehyde derivatives (52a-f) with different substituent groups on its para position (4-H, 4-Br, 4-NO2, 4-isopropyl, 4-OCH3, and 4-Cl), respectively, by base-catalyzed Claisen-Schmidt condensation reaction to produce a series of new chalcone derivatives (53a-f). The yield of synthesized compounds were (50-58%), and their molecular structures were confirmed using IR, 1H NMR and 13C NMR analysis. The synthesized chalcone derivatives (53a-f) were tested against AChE. All compounds showed good activity in AChE inhibition. Moreover, compounds with the presence of electron-withdrawing groups (53b, 53c and 53f) showed excellent activity in AChE inhibition, Among them, compound (53c) showed the most potent activity (89.44%) in acetylcholinesterase inhibition which quite near from the result of the standard Galantamine (94.11%). |
format |
Thesis |
qualification_level |
Master's degree |
author |
Ali, Arman Abdalla |
author_facet |
Ali, Arman Abdalla |
author_sort |
Ali, Arman Abdalla |
title |
Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
title_short |
Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
title_full |
Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
title_fullStr |
Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
title_full_unstemmed |
Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
title_sort |
synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor |
granting_institution |
Universiti Teknologi Malaysia, Faculty of Science |
granting_department |
Faculty of Science |
publishDate |
2020 |
url |
http://eprints.utm.my/id/eprint/102053/1/ArmanAbdallaAliMFS2020.pdf |
_version_ |
1776100834772254720 |
spelling |
my-utm-ep.1020532023-07-31T07:30:17Z Synthesis and characterization of new chalcone derivatives as acetylcholinesterase inhibitor 2020 Ali, Arman Abdalla QD Chemistry Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, anticancer, antioxidant including AChE inhibition activities. Super-activation of cholinesterase (acetylcholinesterase) is linked to various neurological problems most precisely Alzheimer’s disease (AD), which leads to senile dementia. Therefore, cholinesterase (AChE) inhibition is considered as a promising strategy for the treatment of Alzheimer’s disease. For this purpose, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential. In the first step of this study 1-(4-(benzyloxy)phenyl)ethan-1-one (51) was successfully synthesized by benzylation of 4-hydroxy acetophenone with a yield of 88.49% as a precursor to synthesize a series of chalcone derivatives. Then, the precursor was reacted with benzaldehyde derivatives (52a-f) with different substituent groups on its para position (4-H, 4-Br, 4-NO2, 4-isopropyl, 4-OCH3, and 4-Cl), respectively, by base-catalyzed Claisen-Schmidt condensation reaction to produce a series of new chalcone derivatives (53a-f). The yield of synthesized compounds were (50-58%), and their molecular structures were confirmed using IR, 1H NMR and 13C NMR analysis. The synthesized chalcone derivatives (53a-f) were tested against AChE. All compounds showed good activity in AChE inhibition. Moreover, compounds with the presence of electron-withdrawing groups (53b, 53c and 53f) showed excellent activity in AChE inhibition, Among them, compound (53c) showed the most potent activity (89.44%) in acetylcholinesterase inhibition which quite near from the result of the standard Galantamine (94.11%).Chalcones are open-chain flavonoids and considered to be precursors of isoflavonoids and flavonoids which consist of two aromatic rings that linked by a three carbon consist of a, ß-unsaturated carbonyl system. Besides, chalcones display a wide range of biological activities such as antibacterial, anticancer, antioxidant including AChE inhibition activities. Super-activation of cholinesterase (acetylcholinesterase) is linked to various neurological problems most precisely Alzheimer’s disease (AD), which leads to senile dementia. Therefore, cholinesterase (AChE) inhibition is considered as a promising strategy for the treatment of Alzheimer’s disease. For this purpose, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential. In the first step of this study 1-(4-(benzyloxy)phenyl)ethan-1-one (51) was successfully synthesized by benzylation of 4-hydroxy acetophenone with a yield of 88.49% as a precursor to synthesize a series of chalcone derivatives. Then, the precursor was reacted with benzaldehyde derivatives (52a-f) with different substituent groups on its para position (4-H, 4-Br, 4-NO2, 4-isopropyl, 4-OCH3, and 4-Cl), respectively, by base-catalyzed Claisen-Schmidt condensation reaction to produce a series of new chalcone derivatives (53a-f). The yield of synthesized compounds were (50-58%), and their molecular structures were confirmed using IR, 1H NMR and 13C NMR analysis. The synthesized chalcone derivatives (53a-f) were tested against AChE. All compounds showed good activity in AChE inhibition. Moreover, compounds with the presence of electron-withdrawing groups (53b, 53c and 53f) showed excellent activity in AChE inhibition, Among them, compound (53c) showed the most potent activity (89.44%) in acetylcholinesterase inhibition which quite near from the result of the standard Galantamine (94.11%). 2020 Thesis http://eprints.utm.my/id/eprint/102053/ http://eprints.utm.my/id/eprint/102053/1/ArmanAbdallaAliMFS2020.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:146250 masters Universiti Teknologi Malaysia, Faculty of Science Faculty of Science |