Intelligent feature engineered-machine learning based electricity theft detection framework for labelled and unlabelled datasets
Non-Technical Losses (NTLs) in electrical utilities, primarily related to electrical theft, significantly impact energy supplier companies and the nation’s overall economy. Power distribution companies worldwide rely on time-consuming, laborious, and inefficient random onsite inspections to catch an...
Saved in:
主要作者: | Hussain, Saddam |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/102153/1/SaddamHussainPSKE2022.pdf.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Anomaly detection frameworks for identifying energy theft and meter irregularities in smart grids /
由: Yip, Sook Chin
出版: (2019) -
Sentiment analysis in Malay text from unlabelled data
由: Ho, Ian Heng Jin
出版: (2022) -
Dataset generation and network intrusion detection based on flow-level information
由: Mohamedali Abdalla, Ahmed Abdalla
出版: (2015) -
Data sampling methods on imbalanced datasets for pneumonia detection in covid-19 patients
由: Dzulkefli, Syasya Farina
出版: (2022) -
Consumer load prediction and theft classification using intelligent techniques /
由: Isqeel, Abdullateef Ayodele
出版: (2015)