Electroencephalography signal classification using neural network, decision tree and ensemble bagged tree for epilepsy disease
Epilepsy is a brain disease caused by abnormal brain activities. Machine learning algorithms are usually applied in the classification and identification of epilepsy at an early stage. This study's primary objective is to classify the Electroencephalography (EEG) signal dataset of epileptic sei...
محفوظ في:
المؤلف الرئيسي: | Abdul Aziz, Nur Syahirah |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/102291/1/NurSyahirahAbdulAzizMFS2022.pdf.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Cost-sensitive ensemble decision tree algorithms for customer churn analysis
بواسطة: Wong, Keng Tuck
منشور في: (2020) -
Spatial analysis of signal during epileptic seizure on plat electroencephalography
بواسطة: Goh, Chien Yong
منشور في: (2017) -
Jordan-chevalley decomposition of recorded electroencephalography signals during epileptic seizures
بواسطة: Ahmad Fuad, Amirul Aizad
منشور في: (2021) -
Classification of electroencephalography signal using statistical features and regression classifier
بواسطة: Sabri, Nurbaity
منشور في: (2014) -
Classification of electroencephalography signal using statistical features and regression classifier
بواسطة: Sabri, Nurbaity
منشور في: (2014)