Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model

Flight delay has become a hot issue over the recent years since it is one of the common factors that can impact the airline companies in terms of financial cost. When a flight is delayed, it requires the consumption of extra fuels, labor and other necessary aspects in the airline production process...

Full description

Saved in:
Bibliographic Details
Main Author: Zulkeflee, Ilya Farhana
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/102403/1/IlyaFarhanaZulkefleeMFS2019.pdf.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.102403
record_format uketd_dc
spelling my-utm-ep.1024032023-08-21T08:28:21Z Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model 2019 Zulkeflee, Ilya Farhana QA Mathematics Flight delay has become a hot issue over the recent years since it is one of the common factors that can impact the airline companies in terms of financial cost. When a flight is delayed, it requires the consumption of extra fuels, labor and other necessary aspects in the airline production process and this may lead to higher operating cost to the airlines. Thus, this study aims to develop the hybridization between Autoregressive Integrated Moving Average (ARIMA) models and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models to predict the flight delay at Kuala Lumpur International Airport (KLIA). The weekly average minutes flight delay data were obtained from Kuala Lumpur Air Traffic Control Centre (KL ATCC) Flight Information Regions (FIR) Subang which dated from 5th May 2014 until 2nd July 2018. The data are divided into two parts, which 80% of the data are used as in-sample data and the rest 20% are used as out-sample data. The in-sample data are those from 5th May 2014 until 28th August 2017 and out-sample data will be from 4th September 2017 until 2nd July 2018. The data are first analysed by using GARCH models and the performance of these models is compared with hybrid ARIMA-GARCH models. The results of this study revealed that hybrid ARIMA-GARCH model is the best method for modelling and forecasting flight delay compared to GARCH models as it has a smaller value of Akaike’s Information Criterion, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). 2019 Thesis http://eprints.utm.my/id/eprint/102403/ http://eprints.utm.my/id/eprint/102403/1/IlyaFarhanaZulkefleeMFS2019.pdf.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:146329 masters Universiti Teknologi Malaysia Faculty of Science
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA Mathematics
spellingShingle QA Mathematics
Zulkeflee, Ilya Farhana
Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
description Flight delay has become a hot issue over the recent years since it is one of the common factors that can impact the airline companies in terms of financial cost. When a flight is delayed, it requires the consumption of extra fuels, labor and other necessary aspects in the airline production process and this may lead to higher operating cost to the airlines. Thus, this study aims to develop the hybridization between Autoregressive Integrated Moving Average (ARIMA) models and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models to predict the flight delay at Kuala Lumpur International Airport (KLIA). The weekly average minutes flight delay data were obtained from Kuala Lumpur Air Traffic Control Centre (KL ATCC) Flight Information Regions (FIR) Subang which dated from 5th May 2014 until 2nd July 2018. The data are divided into two parts, which 80% of the data are used as in-sample data and the rest 20% are used as out-sample data. The in-sample data are those from 5th May 2014 until 28th August 2017 and out-sample data will be from 4th September 2017 until 2nd July 2018. The data are first analysed by using GARCH models and the performance of these models is compared with hybrid ARIMA-GARCH models. The results of this study revealed that hybrid ARIMA-GARCH model is the best method for modelling and forecasting flight delay compared to GARCH models as it has a smaller value of Akaike’s Information Criterion, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).
format Thesis
qualification_level Master's degree
author Zulkeflee, Ilya Farhana
author_facet Zulkeflee, Ilya Farhana
author_sort Zulkeflee, Ilya Farhana
title Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
title_short Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
title_full Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
title_fullStr Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
title_full_unstemmed Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
title_sort modelling and forecasting flight delay at kuala lumpur international airport using hybrid arima-garch model
granting_institution Universiti Teknologi Malaysia
granting_department Faculty of Science
publishDate 2019
url http://eprints.utm.my/id/eprint/102403/1/IlyaFarhanaZulkefleeMFS2019.pdf.pdf
_version_ 1776100914904432640