Modified non-transformed principal component and adaptive penalized high dimension for grouping effect of stock market price
Nonstationary time series is complex and difficult to be modelled. Many researchers resolved it by transforming it into stationary time series. However, loss of generality will occur which make its inference more difficult. To overcome this, therefore a modified non-transformed approach is proposed...
محفوظ في:
المؤلف الرئيسي: | Andu, Yusrina |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/102444/1/YusrinaAnduPFS2020.pdf.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Modified non-transformed principal component and adaptive penalized high dimension for grouping effect of stock market price.
بواسطة: Yusrina Andu
منشور في: (2020) -
Dimension Reduction For Classification Using Principal Component Analysis (PCA) To Detect Malicious Executables
بواسطة: Jamal, Zalifh
منشور في: (2017) -
Face recognition using modified singular-value-perturbed principal component analysis
بواسطة: Haron@Saharon, Umi Sabariah
منشور في: (2010) -
Improved funnel-gsea using adaptive elastic-net penalization method to identify significant gene sets
بواسطة: Mohd. Hasri, Nurul Nadzirah
منشور في: (2021) -
The effects of bonus issue on stock prices in the Singapore stock market /
بواسطة: Lee, Khong Kee
منشور في: (1987)