Machine learning classification of frequency-hopping spread spectrum signals in a multi-signal environment
Frequency-hopping spread spectrum (FHSS) spreads the signal over a wide bandwidth, where the carrier frequencies change rapidly according to a pseudorandom number making signal classification difficult. Classification becomes more complex with the presence of additive white Gaussian noise (AWGN) and...
محفوظ في:
المؤلف الرئيسي: | Khan, Muhammad Turyalai |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/102791/1/MuhammadTuryalaiKhanPSKE2023.pdf.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multicarrier Frequency Hopping Spread Spectrum Techniques With Quasi-Cyclic Low Density Parity Check Codes Channel Coding
بواسطة: Yahya, Abid
منشور في: (2010) -
Optimised time-frequency analysis for drone detection in a multi-signal environment
بواسطة: Chia, Chun Choon
منشور في: (2021) -
Analysis and classification of airborne radar signal types using time-frequency analysis
بواسطة: Ahmad, Ashraf Adamu
منشور في: (2014) -
The analysis of wireless LAN performance between Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FSSS) / Hairul Bariyah Ab Samad
بواسطة: Ab Samad, Hairul Bariyah
منشور في: (2007) -
An improved algorithm for channel allocation on direct sequence spread spectrum
بواسطة: Handrizal, M
منشور في: (2011)