Spectral domain convolutional neural network optimized for computational workload and memory access cost
Conventional convolutional neural networks (CNNs), which are realized in the spatial domain, present a high computationalworkload and memory access cost (CMC). Spectral domain CNNs (SpCNNs) offer a computationally efficient approach for performing CNN training and inference. State-of-the-art SpCNNs...
Saved in:
主要作者: | Rizvi, Shahriyar Masud |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2023
|
主题: | |
在线阅读: | http://eprints.utm.my/102817/1/ShahriyarMasudRizviPSKE2023.pdf.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Field programmable gate array based convolution neural network hardware accelerator with optimized memory controller
由: Mohammed, Mohammed Isam Eldin Hassan
出版: (2020) -
Stochastic computing system hardware design for convolutional neural networks optimized for accuracy area and energy efficiency
由: Hamdan, Hamdan Usamah
出版: (2020) -
Convolution and max pooling layer accelerator for convolutional neural network
由: Goh, Jinn Chyn
出版: (2020) -
Spectral efficient hybrid wireless optical broadband access network
由: Ali Mohammed Shaddad, Redhwan Qasem
出版: (2013) -
Multiple phase flow identification using computational simulation and convolutional neural network
由: Helmy, Mohamed Tawfik Ibrahim
出版: (2020)