Improved funnel-gsea using adaptive elastic-net penalization method to identify significant gene sets
Gene set enrichment analysis (GSEA) is one of the methods in functional class scoring (FCS) categories for gene set analysis. GSEA is a popular method that was developed to identify, analyse and interpret set of genes or pathways from high-throughput transcriptomics experiments which are significant...
Saved in:
主要作者: | Mohd. Hasri, Nurul Nadzirah |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | http://eprints.utm.my/102997/1/NurulNadzirahMohdHasriMSC2021.pdf.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Using fuzzy logic to identify significant factors of negotiation performance
由: Tameur, Nachef
出版: (2013) -
Generation of rough set (RS) significant reducts and rules for cardiac dataset classification
由: Sulaiman, Noor Suhana
出版: (2007) -
Identifying cancer gene subtypes from gene expression by co-clustering algorithm and support vector machine
由: Machap, Logenthiran
出版: (2021) -
Adaptive hybrid segmentation model based on watershed and enhanced u-net for endothelial human cornea cells
由: Sami, Ahmed Saifullah
出版: (2021) -
Improving embedded linear elasticity in deformable models using stiffness matrix
由: Md Ali, Nor Azura
出版: (2015)