Self-tuning linear adaptive genetic algorithm for feature selection in machinery fault diagnosis
Advanced pattern recognition of a machine learning classifier function, aka the black box allows automated machinery fault diagnosis and outperforms classic decision-making mechanisms. Nonetheless, the black box supervised learning is subject to overfitting when the usefulness of statistical input f...
Saved in:
主要作者: | Ooi, Ching Sheng |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2021
|
主题: | |
在线阅读: | http://eprints.utm.my/107056/1/OoiChingShengPFTIR2021.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Noise eliminated ensemble empirical mode decomposition scalogram analysis for rotating machinery fault diagnosis
由: Atik, Faysal
出版: (2022) -
Ensemble support vector machines and dempster-shafer evidence theory for machinery multi fault diagnosis
由: Hui, Kar Hoou
出版: (2019) -
Blade fault diagnosis using artificial intelligence technique
由: W. K., Ngui
出版: (2016) -
Quantifying depreciation in plant and machinery valuation
由: Sahray, Kholim
出版: (2009) -
Application of wavelet transform analysis for the diagnosis of blade faults in rotating machinery
由: Lim, Meng Hee
出版: (2010)