An integral equation method for solving exterior Neumann problems on smooth regions

This work develops a boundary integral equation method for numerical solution of the exterior Neumann problem. An integral equation for solving the exterior Neumann problem in a simply connected region is derived in this dissertation based on the exterior Riemann-Hilbert problem. In the first step t...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Jumadi, Azlina
التنسيق: أطروحة
اللغة:English
منشور في: 2009
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/12322/6/AzlinaJumadiMFS2009.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This work develops a boundary integral equation method for numerical solution of the exterior Neumann problem. An integral equation for solving the exterior Neumann problem in a simply connected region is derived in this dissertation based on the exterior Riemann-Hilbert problem. In the first step the exterior Neumann problem is reduced to an exterior Riemann-Hilbert problem for the derivative of an auxiliary function which is analytic in the region. Then, the exterior Riemann-Hilbert problem is transformed to a uniquely solvable Fredholm integral equation on the boundary of the region. Once this equation is solved, the auxiliary function and the solution of the exterior Neumann problem can be obtained. The efficiency of the method is illustrated by some numerical examples.