Intelligent control of diving system of an underwater vehicle

The design of a depth control of an underwater vehicle is described in this thesis. A mathematical model of an underwater vehicle namely, Deep Submergence Rescue Vehicle (DSRV) is developed. Four types of controllers are designed which include PD, Pole Placement, Conventional Fuzzy Logic (CFLC), and...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Kashif, Kashif
التنسيق: أطروحة
اللغة:English
منشور في: 2009
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/12358/1/KashifMFKE2009.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my-utm-ep.12358
record_format uketd_dc
spelling my-utm-ep.123582018-06-25T03:20:23Z Intelligent control of diving system of an underwater vehicle 2009 Kashif, Kashif TJ Mechanical engineering and machinery The design of a depth control of an underwater vehicle is described in this thesis. A mathematical model of an underwater vehicle namely, Deep Submergence Rescue Vehicle (DSRV) is developed. Four types of controllers are designed which include PD, Pole Placement, Conventional Fuzzy Logic (CFLC), and Single Input Fuzzy Logic (SIFLC). The CFLC gives satisfactory results. However, the design is complex because there are a large numbers of rules and parameters that need to be tuned. To overcome the problem an alternative to CFLC known as SIFLC is proposed in this thesis. The controller is based on Signed Distance method, which reduces the numbers of rules and tuning parameters without compromising its performance. In effect it reduces the system to a SISO model which results in simple tuning. Faster computation is also expected because the controller can be constructed using a look-up table. All of the four controllers are designed based on overshoot, settling time, and steady state error specification criteria. Based on these criteria, a comparison study is performed to show the effectiveness of the designed controllers. All of the four controllers other than PD controller are found to give satisfactory results. The proposed SIFLC exactly resembles the CFLC in transient and steady state response which shows the effectiveness of the designed controller. 2009 Thesis http://eprints.utm.my/id/eprint/12358/ http://eprints.utm.my/id/eprint/12358/1/KashifMFKE2009.pdf application/pdf en public masters Universiti Teknologi Malaysia, Faculty of Electrical Engineering Faculty of Electrical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Kashif, Kashif
Intelligent control of diving system of an underwater vehicle
description The design of a depth control of an underwater vehicle is described in this thesis. A mathematical model of an underwater vehicle namely, Deep Submergence Rescue Vehicle (DSRV) is developed. Four types of controllers are designed which include PD, Pole Placement, Conventional Fuzzy Logic (CFLC), and Single Input Fuzzy Logic (SIFLC). The CFLC gives satisfactory results. However, the design is complex because there are a large numbers of rules and parameters that need to be tuned. To overcome the problem an alternative to CFLC known as SIFLC is proposed in this thesis. The controller is based on Signed Distance method, which reduces the numbers of rules and tuning parameters without compromising its performance. In effect it reduces the system to a SISO model which results in simple tuning. Faster computation is also expected because the controller can be constructed using a look-up table. All of the four controllers are designed based on overshoot, settling time, and steady state error specification criteria. Based on these criteria, a comparison study is performed to show the effectiveness of the designed controllers. All of the four controllers other than PD controller are found to give satisfactory results. The proposed SIFLC exactly resembles the CFLC in transient and steady state response which shows the effectiveness of the designed controller.
format Thesis
qualification_level Master's degree
author Kashif, Kashif
author_facet Kashif, Kashif
author_sort Kashif, Kashif
title Intelligent control of diving system of an underwater vehicle
title_short Intelligent control of diving system of an underwater vehicle
title_full Intelligent control of diving system of an underwater vehicle
title_fullStr Intelligent control of diving system of an underwater vehicle
title_full_unstemmed Intelligent control of diving system of an underwater vehicle
title_sort intelligent control of diving system of an underwater vehicle
granting_institution Universiti Teknologi Malaysia, Faculty of Electrical Engineering
granting_department Faculty of Electrical Engineering
publishDate 2009
url http://eprints.utm.my/id/eprint/12358/1/KashifMFKE2009.pdf
_version_ 1747814928298803200