Behaviour of filled joint under shear loading

In tropical country like Malaysia, hot and wet weather encourages the formation of filled joint, which is one of the most critical discontinuities that affect the stability of rock mass. It is therefore essential to study the characteristics and behaviours of filled joint to understand their effect...

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Heng Yau
Format: Thesis
Language:English
Published: 2006
Subjects:
Online Access:http://eprints.utm.my/id/eprint/1397/1/OngHengYauMFKA2006.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.1397
record_format uketd_dc
spelling my-utm-ep.13972018-02-20T04:32:09Z Behaviour of filled joint under shear loading 2006-12 Ong, Heng Yau TA Engineering (General). Civil engineering (General) In tropical country like Malaysia, hot and wet weather encourages the formation of filled joint, which is one of the most critical discontinuities that affect the stability of rock mass. It is therefore essential to study the characteristics and behaviours of filled joint to understand their effect on rock mass. Filled joint resulting from in situ deposition of infilling in the joint aperture was the main focus of this study. Dominant components of this filled joint were identified and accordingly modeled in the laboratory tests. A large shear box apparatus (300mm square section) has been designed and fabricated specifically to simulate the loading configurations on the filled joint model. Cast concrete of different surface roughness (planar to rough) was used as joint block. Joint aperture was filled with actual infill material, with thickness between 5 to 15 mm (average density before shear of approximately 1800 kg/m3). The normal stress applied during shear was between 130 to 370 kPa, equivalent to typical slope height of 5 to 15 m. The study showed that the shear resistance of rough filled joint reduces with increasing infill thickness and eventually approaches the shear strength of the infill material. Infill thickness has no significant effect on the shear strength of filled joint with smooth surface texture as its shear strength is almost similar to that of the infill. Nevertheless, with very thin infill (approximately thickness of an infill particle) in smooth joint, the resultant shear resistance is much lower than that of the infill. This implies that the weakest shear plane of a filled joint might not lie within the infill, but at the interface between infill and joint surface. Crushing of infill particles has been noted to influence the shear and compressive behaviours of filled joint 2006-12 Thesis http://eprints.utm.my/id/eprint/1397/ http://eprints.utm.my/id/eprint/1397/1/OngHengYauMFKA2006.pdf application/pdf en public masters Universiti Teknologi Malaysia, Faculty of Civil Engineering Faculty of Civil Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TA Engineering (General)
Civil engineering (General)
spellingShingle TA Engineering (General)
Civil engineering (General)
Ong, Heng Yau
Behaviour of filled joint under shear loading
description In tropical country like Malaysia, hot and wet weather encourages the formation of filled joint, which is one of the most critical discontinuities that affect the stability of rock mass. It is therefore essential to study the characteristics and behaviours of filled joint to understand their effect on rock mass. Filled joint resulting from in situ deposition of infilling in the joint aperture was the main focus of this study. Dominant components of this filled joint were identified and accordingly modeled in the laboratory tests. A large shear box apparatus (300mm square section) has been designed and fabricated specifically to simulate the loading configurations on the filled joint model. Cast concrete of different surface roughness (planar to rough) was used as joint block. Joint aperture was filled with actual infill material, with thickness between 5 to 15 mm (average density before shear of approximately 1800 kg/m3). The normal stress applied during shear was between 130 to 370 kPa, equivalent to typical slope height of 5 to 15 m. The study showed that the shear resistance of rough filled joint reduces with increasing infill thickness and eventually approaches the shear strength of the infill material. Infill thickness has no significant effect on the shear strength of filled joint with smooth surface texture as its shear strength is almost similar to that of the infill. Nevertheless, with very thin infill (approximately thickness of an infill particle) in smooth joint, the resultant shear resistance is much lower than that of the infill. This implies that the weakest shear plane of a filled joint might not lie within the infill, but at the interface between infill and joint surface. Crushing of infill particles has been noted to influence the shear and compressive behaviours of filled joint
format Thesis
qualification_level Master's degree
author Ong, Heng Yau
author_facet Ong, Heng Yau
author_sort Ong, Heng Yau
title Behaviour of filled joint under shear loading
title_short Behaviour of filled joint under shear loading
title_full Behaviour of filled joint under shear loading
title_fullStr Behaviour of filled joint under shear loading
title_full_unstemmed Behaviour of filled joint under shear loading
title_sort behaviour of filled joint under shear loading
granting_institution Universiti Teknologi Malaysia, Faculty of Civil Engineering
granting_department Faculty of Civil Engineering
publishDate 2006
url http://eprints.utm.my/id/eprint/1397/1/OngHengYauMFKA2006.pdf
_version_ 1747814376164818944