Design of RF filter based on RF components

Inductors, L, and capacitors, C, are among the most important circuit elements, especially for the radio frequency, RF, applications. Such applications of these components include frequency-tuning circuits, filters, mixers, and matching networks. This thesis presents the design and modelling of RF f...

Full description

Saved in:
Bibliographic Details
Main Author: Haris, Norshakila
Format: Thesis
Language:English
Published: 2008
Subjects:
Online Access:http://eprints.utm.my/id/eprint/17993/1/NorshakilaHarisMFKE2008.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.17993
record_format uketd_dc
spelling my-utm-ep.179932018-10-14T07:23:44Z Design of RF filter based on RF components 2008 Haris, Norshakila TK Electrical engineering. Electronics Nuclear engineering Inductors, L, and capacitors, C, are among the most important circuit elements, especially for the radio frequency, RF, applications. Such applications of these components include frequency-tuning circuits, filters, mixers, and matching networks. This thesis presents the design and modelling of RF filters that consist of on-chip RF components. Firstly, two on-chip RF components have been separately designed before they were formed into an RF filter. The chosen configurations are the interdigital capacitor and spiral inductor. The effects of parameter variations on quality factor and inductance or capacitance values were investigated using simulation software. Upon achieving the desired performances, the components were arranged into series and shunt, forming two corresponding filter configurations. Both configurations were then connected to form a single stage series-shunt LC filter using parallel connection. Simulation results showed that both components operate well at the desired 13 GHz RF frequency of operation. The series and shunt LC filters demonstrate characteristics of a bandpass filter. At -3 dB or half-power insertion and return losses, both exhibit operating bandwidths from 8 GHz to 11 GHz, i.e. 3.0 GHz or 32 %. In ratio form, this is 11/8 = 1.375 which is quite broad. The single stage series-shunt LC filter also demonstrates characteristics of a bandpass filter. It exhibits slightly less -3 dB operating bandwidth from 8.75 GHz to 10.25 GHz, i.e. 1.5 GHz or 16 %. In ratio form, this is 10.25/8.75 = 1.17 which is slightly broad. This is halved that of the series and shunt LC filters. Hence, the former exhibits a maximum Q factor of approximately 3.2, which is doubled that of the single stage series-shunt LC filter. 2008 Thesis http://eprints.utm.my/id/eprint/17993/ http://eprints.utm.my/id/eprint/17993/1/NorshakilaHarisMFKE2008.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:89338?queryType=vitalDismax&query=Design+of+RF+filter+based+on+RF+components&public=true masters Universiti Teknologi Malaysia, Faculty of Electrical Engineering Faculty of Electrical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TK Electrical engineering
Electronics Nuclear engineering
spellingShingle TK Electrical engineering
Electronics Nuclear engineering
Haris, Norshakila
Design of RF filter based on RF components
description Inductors, L, and capacitors, C, are among the most important circuit elements, especially for the radio frequency, RF, applications. Such applications of these components include frequency-tuning circuits, filters, mixers, and matching networks. This thesis presents the design and modelling of RF filters that consist of on-chip RF components. Firstly, two on-chip RF components have been separately designed before they were formed into an RF filter. The chosen configurations are the interdigital capacitor and spiral inductor. The effects of parameter variations on quality factor and inductance or capacitance values were investigated using simulation software. Upon achieving the desired performances, the components were arranged into series and shunt, forming two corresponding filter configurations. Both configurations were then connected to form a single stage series-shunt LC filter using parallel connection. Simulation results showed that both components operate well at the desired 13 GHz RF frequency of operation. The series and shunt LC filters demonstrate characteristics of a bandpass filter. At -3 dB or half-power insertion and return losses, both exhibit operating bandwidths from 8 GHz to 11 GHz, i.e. 3.0 GHz or 32 %. In ratio form, this is 11/8 = 1.375 which is quite broad. The single stage series-shunt LC filter also demonstrates characteristics of a bandpass filter. It exhibits slightly less -3 dB operating bandwidth from 8.75 GHz to 10.25 GHz, i.e. 1.5 GHz or 16 %. In ratio form, this is 10.25/8.75 = 1.17 which is slightly broad. This is halved that of the series and shunt LC filters. Hence, the former exhibits a maximum Q factor of approximately 3.2, which is doubled that of the single stage series-shunt LC filter.
format Thesis
qualification_level Master's degree
author Haris, Norshakila
author_facet Haris, Norshakila
author_sort Haris, Norshakila
title Design of RF filter based on RF components
title_short Design of RF filter based on RF components
title_full Design of RF filter based on RF components
title_fullStr Design of RF filter based on RF components
title_full_unstemmed Design of RF filter based on RF components
title_sort design of rf filter based on rf components
granting_institution Universiti Teknologi Malaysia, Faculty of Electrical Engineering
granting_department Faculty of Electrical Engineering
publishDate 2008
url http://eprints.utm.my/id/eprint/17993/1/NorshakilaHarisMFKE2008.pdf
_version_ 1747815166857183232