Learning enhancement of radial basis function network with particle swarm optimization
Back propagation (BP) algorithm is the most common technique in Artificial Neural Network (ANN) learning, and this includes Radial Basis Function Network. However, major disadvantages of BP are its convergence rate is relatively slow and always being trapped at the local minima. To overcome this pro...
Saved in:
主要作者: | Sultan Noman, Qasem Mohammed |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2008
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/18057/1/SultanNomanQasemMohammedMFM2008.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Memetic multi-objective evolutionary algorithms of radial basis function network for classification problems
由: Qasem, Sultan Noman
出版: (2011) -
Learning enhancement of radial basis function neural network with harmony search algorithm
由: Ahmed, Mohamed Hassan
出版: (2013) -
Particle swarm optimization for neural network learning enhancement
由: Abdull Hamed, Haza Nuzly
出版: (2006) -
Classification of breast cancer microarray data using radial basis function network
由: Mazlan, Umi Hanim
出版: (2009) -
Enhancement of elman recurrent network learning with particle swarm optimization
由: Ab. Aziz, Mohamad Firdaus
出版: (2007)