Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images

Saved in:
Bibliographic Details
Main Author: Yudistira, Novanto
Format: Thesis
Published: 2011
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.28720
record_format uketd_dc
spelling my-utm-ep.287202017-06-20T04:33:46Z Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images 2011 Yudistira, Novanto QA75 Electronic computers. Computer science 2011 Thesis http://eprints.utm.my/id/eprint/28720/ masters Universiti Teknologi Malaysia, Faculty of Computer Science and Information System Faculty of Computer Science and Information System
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
topic QA75 Electronic computers
Computer science
spellingShingle QA75 Electronic computers
Computer science
Yudistira, Novanto
Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
description
format Thesis
qualification_level Master's degree
author Yudistira, Novanto
author_facet Yudistira, Novanto
author_sort Yudistira, Novanto
title Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
title_short Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
title_full Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
title_fullStr Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
title_full_unstemmed Kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
title_sort kernel function and parameter selection evaluation based on analysis magnetic resonance imaging of brain images
granting_institution Universiti Teknologi Malaysia, Faculty of Computer Science and Information System
granting_department Faculty of Computer Science and Information System
publishDate 2011
_version_ 1747815687501381632