Classification of imbalanced datasets using naive bayes
Imbalanced data set had tendency to effect classifier performance in machine learning due to the greater influence given by majority data that overlooked the minority ones. But in classifying data, more important class is given by the minority data. In order to solve this problem, original Naïve Bay...
Saved in:
主要作者: | Mohd. Sobran, Nur Maisarah |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2011
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/31941/5/NurMaisarahMohdSobranMFKE2011.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Data sampling methods on imbalanced datasets for pneumonia detection in covid-19 patients
由: Dzulkefli, Syasya Farina
出版: (2022) -
FPGA implementation of naive bayes classifier for network security
由: Mohamad Zuki, Ahmad Zulzhafri
出版: (2018) -
Hardware implementation of naive bayes classifier for malware detection
由: Al Hussein, Yahya Khaled
出版: (2021) -
N-gram feature extraction and Naïve Bayes classifier for malware detection using FPGA implementation
由: Lee, Ming Yi
出版: (2022) -
Hybrid artificial neural network-naive bayes classifier for solving imbalanced dataset problems
由: Adam, Asrul
出版: (2012)