Cultivation of microalgae using palm oil mill effluent for lipid production

Microalgae are reported as the potential resources to produce lipid from their biomass cell. Lipid is generally a group of organic compound that important as primary biofuel raw material, and also as component for foods, cosmetic products, fertilizers, animal feed, etc. As the resources of lipid pro...

Full description

Saved in:
Bibliographic Details
Main Author: Putri, Erisa Viony
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://eprints.utm.my/id/eprint/31978/5/ErisaVionyPutriMFKA2012.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.31978
record_format uketd_dc
spelling my-utm-ep.319782017-09-29T05:41:58Z Cultivation of microalgae using palm oil mill effluent for lipid production 2012-07 Putri, Erisa Viony TD Environmental technology. Sanitary engineering Microalgae are reported as the potential resources to produce lipid from their biomass cell. Lipid is generally a group of organic compound that important as primary biofuel raw material, and also as component for foods, cosmetic products, fertilizers, animal feed, etc. As the resources of lipid production from synthetic media are costly, therefore the derivation of cheap sources from waste is useful in massive scale. Therefore, the study is emphasized on the effectiveness of industrial wastewater such as palm oil mill effluent (POME) as main carbon source to maintain the growth of microalgae and simultaneously increase the lipid content. In addition, glucose (C6H12O6) is also used to compare the effectiveness of their cultivations. Furthermore, investigation of five selected strains of green microalgae are applied namely Chlorella vulgaris (Korean Collection for Type Cultures (KCTC) Biological Resource Center (BRC)), Chlorella pyrenoidosa (POME), Chlorella sorokiniana (UTEX 1602), Botryococcus sudeticus (UTEX 2629), and Tetraselmis sp (UTEX 2767). All cultivation of microalgae were initially carried out in 250 mL erlenmeyer flask containing 100 mL medium under ± 30oC of temperature with continuous illumination (± 14 µmol/m2/s) and up to 20 days of cultivations. The study demonstrated that Chlorella sorokiniana, is the predominant species for specific growth rate (µ), biomass productivity and lipid content in diluted POME with the value 0.099/day, 8.0 mg/L.day, 2.68 mg lipid/mg Cell Dry Weight (CDW), respectively. However, Chlorella sorokiniana showed that there was about one and half times more lipid productivity when the biomass cells utilized C6H12O6 as carbon source, compared to POME. The optimization condition was determined with various carbon-to-total nitrogen (C:TN) ratio and light/dark (L:D) cycles, respectively. As a result, the highest lipid content achieved when the condition controlled at C:TN (100:7) and continuous light duration (24 hr), with recorded value of 17 mg lipid/mg CDW. These results conclude that Chlorella sorokiniana had highest growth rates and lipid production in diluted POME compared to other strains of microalgae. Finally, the study suggested several improvement of the experiment to achieve higher lipid production at steady - state condition by manipulating the ratio of carbon-to-total nitrogen and the medium of light intensity. 2012-07 Thesis http://eprints.utm.my/id/eprint/31978/ http://eprints.utm.my/id/eprint/31978/5/ErisaVionyPutriMFKA2012.pdf application/pdf en public masters Universiti Teknologi Malaysia, Faculty of Civil Engineering Faculty of Civil Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TD Environmental technology
Sanitary engineering
spellingShingle TD Environmental technology
Sanitary engineering
Putri, Erisa Viony
Cultivation of microalgae using palm oil mill effluent for lipid production
description Microalgae are reported as the potential resources to produce lipid from their biomass cell. Lipid is generally a group of organic compound that important as primary biofuel raw material, and also as component for foods, cosmetic products, fertilizers, animal feed, etc. As the resources of lipid production from synthetic media are costly, therefore the derivation of cheap sources from waste is useful in massive scale. Therefore, the study is emphasized on the effectiveness of industrial wastewater such as palm oil mill effluent (POME) as main carbon source to maintain the growth of microalgae and simultaneously increase the lipid content. In addition, glucose (C6H12O6) is also used to compare the effectiveness of their cultivations. Furthermore, investigation of five selected strains of green microalgae are applied namely Chlorella vulgaris (Korean Collection for Type Cultures (KCTC) Biological Resource Center (BRC)), Chlorella pyrenoidosa (POME), Chlorella sorokiniana (UTEX 1602), Botryococcus sudeticus (UTEX 2629), and Tetraselmis sp (UTEX 2767). All cultivation of microalgae were initially carried out in 250 mL erlenmeyer flask containing 100 mL medium under ± 30oC of temperature with continuous illumination (± 14 µmol/m2/s) and up to 20 days of cultivations. The study demonstrated that Chlorella sorokiniana, is the predominant species for specific growth rate (µ), biomass productivity and lipid content in diluted POME with the value 0.099/day, 8.0 mg/L.day, 2.68 mg lipid/mg Cell Dry Weight (CDW), respectively. However, Chlorella sorokiniana showed that there was about one and half times more lipid productivity when the biomass cells utilized C6H12O6 as carbon source, compared to POME. The optimization condition was determined with various carbon-to-total nitrogen (C:TN) ratio and light/dark (L:D) cycles, respectively. As a result, the highest lipid content achieved when the condition controlled at C:TN (100:7) and continuous light duration (24 hr), with recorded value of 17 mg lipid/mg CDW. These results conclude that Chlorella sorokiniana had highest growth rates and lipid production in diluted POME compared to other strains of microalgae. Finally, the study suggested several improvement of the experiment to achieve higher lipid production at steady - state condition by manipulating the ratio of carbon-to-total nitrogen and the medium of light intensity.
format Thesis
qualification_level Master's degree
author Putri, Erisa Viony
author_facet Putri, Erisa Viony
author_sort Putri, Erisa Viony
title Cultivation of microalgae using palm oil mill effluent for lipid production
title_short Cultivation of microalgae using palm oil mill effluent for lipid production
title_full Cultivation of microalgae using palm oil mill effluent for lipid production
title_fullStr Cultivation of microalgae using palm oil mill effluent for lipid production
title_full_unstemmed Cultivation of microalgae using palm oil mill effluent for lipid production
title_sort cultivation of microalgae using palm oil mill effluent for lipid production
granting_institution Universiti Teknologi Malaysia, Faculty of Civil Engineering
granting_department Faculty of Civil Engineering
publishDate 2012
url http://eprints.utm.my/id/eprint/31978/5/ErisaVionyPutriMFKA2012.pdf
_version_ 1747815891722043392