Risk-based avilable transfer capability (ATC) assessment including non-diaspatchable generation
Available Transfer Capability (ATC) is a measure for assessing the capability between different areas of the power systems which are governed by non-linear power flow equations. ATC contains different complicated parts. Total transfer capability (TTC) and two margins; transmission reliability margin...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/33270/5/MehranKhosravifardMFKE2013.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Available Transfer Capability (ATC) is a measure for assessing the capability between different areas of the power systems which are governed by non-linear power flow equations. ATC contains different complicated parts. Total transfer capability (TTC) and two margins; transmission reliability margin (TRM) benefit margins (CBM) are the main parts which have to be considered for accurate calculation. This report conducts the ATC evaluation with the main part, TTC, by a continuation power flow algorithm (CPF). CPF is an attractive method for non-linear equations and specially is used as the solution to power flow equations due to its capability for solving the power flow algebraic equations at the bifurcation nose point. CPF algorithm has been compared with other types for power flow equation solution algorithms and obtained based on its superior characteristics over them. Integration of wind farms into the IEEE 30-bus test system at a different location was successfully done. non-dispatchable generation impacts on ATC value has been checked by considering the probabilistic method for wind turbine power output, while both thermal and voltage system limitations have been applied. Results show that, available transfer capability is dramatically declined by considering these power system limitations. In addition, integrating of the wind farm into the test system has increased the power system loading parameter and similarly ATC. It was shown that by changing the location of injected wind power into the power system, ATC is changed. This change firmly depends on the voltage profile level of the connected bus into the wind farm and also weather conditions in the wind farm. |
---|