An active front steering control based on composite nonlinear feedback for vehicle yaw stability system

Vehicle stability control (VSC) is one of important topics in vehicle dynamics and active automotive control. This research is focusing on vehicle stability control by active steering system that utilizes steering control method to improve stability of the vehicle. This stability control system is s...

Full description

Saved in:
Bibliographic Details
Main Author: Che Hasan, Mohd. Hanif
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.utm.my/id/eprint/33762/5/MohdhanifCheHasanMFKE2013.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.33762
record_format uketd_dc
spelling my-utm-ep.337622017-09-11T01:45:59Z An active front steering control based on composite nonlinear feedback for vehicle yaw stability system 2013-01 Che Hasan, Mohd. Hanif TL Motor vehicles. Aeronautics. Astronautics Vehicle stability control (VSC) is one of important topics in vehicle dynamics and active automotive control. This research is focusing on vehicle stability control by active steering system that utilizes steering control method to improve stability of the vehicle. This stability control system is solely based on kinematic and dynamics motion of vehicle. The development of mathematical model of vehicle dynamic that includes body and tyre dynamics is one of the most important steps to make sure the result obtain is close as possible to actual system. In the other hand, an analysis of transient state is very crucial in control system performance where one of the objectives is to track reference signal as fast as possible with minimum overshoot, fast settling time, and without exceed nature of actuator saturation limit. Hence, in order to achieve this target, a robust and high performance of control algorithm is essential for vehicle stability control. In this research project report, a Composite Nonlinear Feedback (CNF) strategy is used to control yaw rate of vehicle through active steering. Extensive computer simulation is performed with considering a various profile of cornering manoeuvres with external disturbance to evaluate its performance in different scenarios. The performance of the proposed controller is compared to conventional Proportional Integration and Derivative (PID) for effectiveness analysis. 2013-01 Thesis http://eprints.utm.my/id/eprint/33762/ http://eprints.utm.my/id/eprint/33762/5/MohdhanifCheHasanMFKE2013.pdf application/pdf en public masters Universiti Teknologi Malaysia, Faculty of Electrical Engineering Faculty of Electrical Engineering
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic TL Motor vehicles
Aeronautics
Astronautics
spellingShingle TL Motor vehicles
Aeronautics
Astronautics
Che Hasan, Mohd. Hanif
An active front steering control based on composite nonlinear feedback for vehicle yaw stability system
description Vehicle stability control (VSC) is one of important topics in vehicle dynamics and active automotive control. This research is focusing on vehicle stability control by active steering system that utilizes steering control method to improve stability of the vehicle. This stability control system is solely based on kinematic and dynamics motion of vehicle. The development of mathematical model of vehicle dynamic that includes body and tyre dynamics is one of the most important steps to make sure the result obtain is close as possible to actual system. In the other hand, an analysis of transient state is very crucial in control system performance where one of the objectives is to track reference signal as fast as possible with minimum overshoot, fast settling time, and without exceed nature of actuator saturation limit. Hence, in order to achieve this target, a robust and high performance of control algorithm is essential for vehicle stability control. In this research project report, a Composite Nonlinear Feedback (CNF) strategy is used to control yaw rate of vehicle through active steering. Extensive computer simulation is performed with considering a various profile of cornering manoeuvres with external disturbance to evaluate its performance in different scenarios. The performance of the proposed controller is compared to conventional Proportional Integration and Derivative (PID) for effectiveness analysis.
format Thesis
qualification_level Master's degree
author Che Hasan, Mohd. Hanif
author_facet Che Hasan, Mohd. Hanif
author_sort Che Hasan, Mohd. Hanif
title An active front steering control based on composite nonlinear feedback for vehicle yaw stability system
title_short An active front steering control based on composite nonlinear feedback for vehicle yaw stability system
title_full An active front steering control based on composite nonlinear feedback for vehicle yaw stability system
title_fullStr An active front steering control based on composite nonlinear feedback for vehicle yaw stability system
title_full_unstemmed An active front steering control based on composite nonlinear feedback for vehicle yaw stability system
title_sort active front steering control based on composite nonlinear feedback for vehicle yaw stability system
granting_institution Universiti Teknologi Malaysia, Faculty of Electrical Engineering
granting_department Faculty of Electrical Engineering
publishDate 2013
url http://eprints.utm.my/id/eprint/33762/5/MohdhanifCheHasanMFKE2013.pdf
_version_ 1747816178907086848