Load dispatch optimization of open cycle industrial gas turbine plant incorporating operational, maintenance and environmental parameters
Power generation fuel cost, unit availability and environmental rules and regulations are important parameters in power generation load dispatch optimization. Previous optimization work has not considered the later two in their formulations. The objective of this work is to develop a multi-objective...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2006
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/3587/1/FongYeowHuangMFKM2006.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Power generation fuel cost, unit availability and environmental rules and regulations are important parameters in power generation load dispatch optimization. Previous optimization work has not considered the later two in their formulations. The objective of this work is to develop a multi-objective optimization model and optimization algorithm for load dispatching optimization of open cycle gas turbine plant that not only consider operational parameters, but also incorporates maintenance and environmental parameters. Gas turbine performance parameters with reference to ASME PTC 22-1985 were developed and validated against an installed performance monitoring system (PMS9000) and plant performance test report. A gas turbine input-output model and emission were defined mathematically into the optimization multi-objectives function. Maintenance parameters of Equivalent Operating Hours (EOH) constraints and environmental parameters of allowable emission (NOx, CO and SO2) limits constraints were also included. The Extended Priority List and Particle Swarm Optimization (EPL-PSO) method was successfully implemented to solve the model. Four simulation tests were conducted to study and test the develop optimization software. Simulation results successfully demonstrated that multi-objectives total production cost (TPC) objective functions, the proposed EOH constraint, emissions model and constraints algorithm could be incorporated into the EPL-PSO method which provided optimum results, without violating any of the constraints as defined. A cost saving of 0.685% and 0.1157% could be obtained based on simulations conducted on actual plant condition and against benchmark problem respectively. The results of this work can be used for actual plant application and future development work for new gas turbine model or to include additional operational constraints |
---|