Direct torque control of induction motor drives using space vector modulation (DTC-SVM)

Direct Torque Control is a control technique used in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators, a flux and torque estimator and a voltage vector selection table. The torque and flux are controlled simultaneously b...

Full description

Saved in:
Bibliographic Details
Main Author: Ismail, Zool Hilmi
Format: Thesis
Language:English
Published: 2005
Subjects:
Online Access:http://eprints.utm.my/id/eprint/3605/1/ZoolHilmiIsmailMFKE2005.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct Torque Control is a control technique used in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators, a flux and torque estimator and a voltage vector selection table. The torque and flux are controlled simultaneously by applying suitable voltage vectors, and by limiting these quantities within their hysteresis bands, de-coupled control of torque and flux can be achieved. However, as with other hysteresis-bases systems, DTC drives utilizing hysteresis comparators suffer from high torque ripple and variable switching frequency. The most common solution to this problem is to use the space vector depends on the reference torque and flux. The reference voltage vector is then realized using a voltage vector modulator. Several variations of DTC-SVM have been proposed and discussed in the literature. The work of this project is to study, evaluate and compare the various techniques of the DTC-SVM applied to the induction machines through simulations. The simulations were carried out using MATLAB/SIMULINK simulation package. Evaluation was made based on the drive performance, which includes dynamic torque and flux responses, feasibility and the complexity of the systems.