Taxonomy learning from Malay texts using artificial immune system based clustering
In taxonomy learning from texts, the extracted features that are used to describe the context of a term usually are erroneous and sparse. Various attempts to overcome data sparseness and noise have been made using clustering algorithm such as Hierarchical Agglomerative Clustering (HAC), Bisecting K-...
محفوظ في:
المؤلف الرئيسي: | Ahmad Nazri, Mohd. Zakree |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2011
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/36947/1/MohdZakreeAhmadNazriPFSKSM2011.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Taxonomy learning from malay texts using artiificial immune system based clustering /
بواسطة: Mohd Zakree Ahmad Nazri
منشور في: (2011) -
Enhanced framework for alert processing using clustering approach based on artificial immune system
بواسطة: Mohamed, Ashara Banu
منشور في: (2015) -
Graph based text representation for document clustering
بواسطة: Abdulsahib, Asma Khazaal
منشور في: (2015) -
Artificial immune system for static and dynamic production scheduling problems
بواسطة: Muhamad, Ahmad Shahrizal
منشور في: (2017) -
Artificial immune system for static and dynamic production scheduling problems
بواسطة: Muhamad, Ahmad Shahrizal
منشور في: (2017)