Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation

The brain is the most complex organ in the human body, and it consists of four regions namely, gray matter, white matter, cerebrospinal fluid and background. It is widely accepted as an imaging modality for detecting a variety of conditions of the brain such as tumours, bleeding, swelling, infection...

全面介紹

Saved in:
書目詳細資料
主要作者: Maolood, Ismail Yaqub
格式: Thesis
語言:English
出版: 2013
主題:
在線閱讀:http://eprints.utm.my/id/eprint/41850/5/IsmailYaqubNaoloodMFSKSM2013.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my-utm-ep.41850
record_format uketd_dc
spelling my-utm-ep.418502020-07-07T01:23:44Z Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation 2013-11 Maolood, Ismail Yaqub QA Mathematics The brain is the most complex organ in the human body, and it consists of four regions namely, gray matter, white matter, cerebrospinal fluid and background. It is widely accepted as an imaging modality for detecting a variety of conditions of the brain such as tumours, bleeding, swelling, infections, or problems associated with blood vessels. Brain images mostly contain noise, inhomogeneity and sometimes deviation. Therefore, accurate segmentation of brain images is a very difficult task. This thesis presents a new approach of Magnetic Resonance Imaging (MRI) brain tissue segmentation, which consists of three main phases: (1) Noise removal using median filter, (2) Tissue clustering based on the fuzzy c-means, and (3) Tissue segmentation using the fuzzy level set method, which finally separates white matter from gray matter. The results show that the segmentation’s accuracy rates of 98% is achieved when tested on 100 samples of MRI brain images atlas dataset. 2013-11 Thesis http://eprints.utm.my/id/eprint/41850/ http://eprints.utm.my/id/eprint/41850/5/IsmailYaqubNaoloodMFSKSM2013.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:82473 masters Universiti Teknologi Malaysia, Faculty of Computing Faculty of Computing
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA Mathematics
spellingShingle QA Mathematics
Maolood, Ismail Yaqub
Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation
description The brain is the most complex organ in the human body, and it consists of four regions namely, gray matter, white matter, cerebrospinal fluid and background. It is widely accepted as an imaging modality for detecting a variety of conditions of the brain such as tumours, bleeding, swelling, infections, or problems associated with blood vessels. Brain images mostly contain noise, inhomogeneity and sometimes deviation. Therefore, accurate segmentation of brain images is a very difficult task. This thesis presents a new approach of Magnetic Resonance Imaging (MRI) brain tissue segmentation, which consists of three main phases: (1) Noise removal using median filter, (2) Tissue clustering based on the fuzzy c-means, and (3) Tissue segmentation using the fuzzy level set method, which finally separates white matter from gray matter. The results show that the segmentation’s accuracy rates of 98% is achieved when tested on 100 samples of MRI brain images atlas dataset.
format Thesis
qualification_level Master's degree
author Maolood, Ismail Yaqub
author_facet Maolood, Ismail Yaqub
author_sort Maolood, Ismail Yaqub
title Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation
title_short Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation
title_full Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation
title_fullStr Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation
title_full_unstemmed Fuzzy C-means clustering algorithm with level set for MRI cerebral tissue segmentation
title_sort fuzzy c-means clustering algorithm with level set for mri cerebral tissue segmentation
granting_institution Universiti Teknologi Malaysia, Faculty of Computing
granting_department Faculty of Computing
publishDate 2013
url http://eprints.utm.my/id/eprint/41850/5/IsmailYaqubNaoloodMFSKSM2013.pdf
_version_ 1747816632024039424