Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA
The objective of this thesis is to study the mechanism of foam flow that occurs in porous media during CO2-foam flooding process. One of the influential factors affecting the mechanism of foam flow in porous media is the flow rate. The experimental work was performed at flow rate ranging from 0.0001...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2003
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/42586/1/SugiatmoKasmunginFKKKSA2003.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-utm-ep.42586 |
---|---|
record_format |
uketd_dc |
spelling |
my-utm-ep.425862017-10-17T12:03:01Z Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA 2003 Kasmungin, Sugiatmo TN Mining engineering. Metallurgy The objective of this thesis is to study the mechanism of foam flow that occurs in porous media during CO2-foam flooding process. One of the influential factors affecting the mechanism of foam flow in porous media is the flow rate. The experimental work was performed at flow rate ranging from 0.0001 to 2.5000 ml/min. This thesis determined the effect of the flow rates on foam flow mechanism in porous media.Micromodel was used as the porous media in order to enable the observation of the foam movement. The phenomena of the foam flow mechanism were recorded using video tape. The type of surfactant used in this experiment was alpha olefin sulphonate (AOS) at concentration of 1.00 wt.%. The oil phase was various synthetic oil (e.g. hexane). The experiments were conducted at room conditions. The results of the study showed that the mechanism of foam flow in porous media are reforming and breaking process of foam in porous medium. At condition of high flow rates (> 1.0000 mVmin) the mechanism of foam flow is dominated by the snap-off. while at the condition of low flow rates (<1.0000 mllmin). it is dominated by the coalescence capillary suction and gas diffusion. The interaction between oil and foam in porous media was categorized as non-oil spreading phase (such as micro emulsion) on the foam surfaces. The mechanism of oil flow was observed as network of oil on foam surfaces. Due to the coalescence capillary suction and snap-off processes. the trapped oil in porous media was displaced to the outlet. In the presence of foam in porous media with coalescence capillary suction and snap- off mechanisms have succeeded in controlling mobility of CO2-foam flooding. 2003 Thesis http://eprints.utm.my/id/eprint/42586/ http://eprints.utm.my/id/eprint/42586/1/SugiatmoKasmunginFKKKSA2003.pdf application/pdf en public http://libraryopac.utm.my/client/en_AU/main/search/detailnonmodal/ent:$002f$002fSD_ILS$002f0$002fSD_ILS:387081/one?qu=Penggunaan+busa+untuk+mengawal+mobiliti+dalam+banjiran+CO2-BUSA phd doctoral Universiti Teknologi Malaysia, Faculty of Chemical Engineering Faculty of Chemical Engineering |
institution |
Universiti Teknologi Malaysia |
collection |
UTM Institutional Repository |
language |
English |
topic |
TN Mining engineering Metallurgy |
spellingShingle |
TN Mining engineering Metallurgy Kasmungin, Sugiatmo Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA |
description |
The objective of this thesis is to study the mechanism of foam flow that occurs in porous media during CO2-foam flooding process. One of the influential factors affecting the mechanism of foam flow in porous media is the flow rate. The experimental work was performed at flow rate ranging from 0.0001 to 2.5000 ml/min. This thesis determined the effect of the flow rates on foam flow mechanism in porous media.Micromodel was used as the porous media in order to enable the observation of the foam movement. The phenomena of the foam flow mechanism were recorded using video tape. The type of surfactant used in this experiment was alpha olefin sulphonate (AOS)
at concentration of 1.00 wt.%. The oil phase was various synthetic oil (e.g. hexane). The experiments were conducted at room conditions. The results of the study showed that the mechanism of foam flow in porous media are reforming and breaking process of foam in porous medium. At condition of high flow rates (> 1.0000 mVmin) the mechanism of foam flow is dominated by the snap-off. while at the condition of low flow rates (<1.0000 mllmin). it is dominated by the coalescence capillary suction and gas diffusion. The interaction between oil and foam in porous media was categorized as non-oil spreading phase (such as micro emulsion) on the foam surfaces. The mechanism of oil flow was observed as network of oil on foam surfaces. Due to the coalescence capillary suction and snap-off processes. the trapped oil in porous media was displaced to the outlet. In the presence of foam in porous media with coalescence capillary suction and snap- off mechanisms have succeeded in controlling mobility of CO2-foam flooding. |
format |
Thesis |
qualification_name |
Doctor of Philosophy (PhD.) |
qualification_level |
Doctorate |
author |
Kasmungin, Sugiatmo |
author_facet |
Kasmungin, Sugiatmo |
author_sort |
Kasmungin, Sugiatmo |
title |
Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA |
title_short |
Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA |
title_full |
Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA |
title_fullStr |
Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA |
title_full_unstemmed |
Penggunaan busa untuk mengawal mobiliti dalam banjiran CO2-BUSA |
title_sort |
penggunaan busa untuk mengawal mobiliti dalam banjiran co2-busa |
granting_institution |
Universiti Teknologi Malaysia, Faculty of Chemical Engineering |
granting_department |
Faculty of Chemical Engineering |
publishDate |
2003 |
url |
http://eprints.utm.my/id/eprint/42586/1/SugiatmoKasmunginFKKKSA2003.pdf |
_version_ |
1747816805649350656 |