Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data

The continuous growth of the information on the Internet makes it necessary for users to be provided with a convenient and yet accurate tools to capture the information needed. Web usage mining has gained more popularity among researchers in discovering the users browsing behavior by mining the web...

全面介紹

Saved in:
書目詳細資料
主要作者: Ahmad Hijazi, Mohd. Hanafi
格式: Thesis
語言:English
出版: 2005
主題:
在線閱讀:http://eprints.utm.my/id/eprint/4291/1/MohdHanafiAhmadHijaziMFSKSM2005.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my-utm-ep.4291
record_format uketd_dc
spelling my-utm-ep.42912018-01-16T08:15:05Z Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data 2005-03 Ahmad Hijazi, Mohd. Hanafi QA75 Electronic computers. Computer science The continuous growth of the information on the Internet makes it necessary for users to be provided with a convenient and yet accurate tools to capture the information needed. Web usage mining has gained more popularity among researchers in discovering the users browsing behavior by mining the web server log that records all the users’ transactions activities. By applying it into the recommendation engine, Web personalization can be executed based on the discovered user’s behavior. Nevertheless, the efficiency of the generated recommendations is still an issue for researchers. This thesis is focusing on the development of a usage model for predictions based on association rule and similarity measures, named ARsim. Additional parameter was used to measure the similarities between URLs, which is the time user spent on a particular page. To generate the final recommendation, similarity between URLs contained in the active user profile was calculated upon the matched Web usage profiles and finally the top- N most similar URLs are then recommended to the user. Three evaluation metrics, which is commonly used by other researchers for evaluation of Web page recommendation model, was applied to evaluate the efficacy of ARsim, namely precision, coverage and F1. Comparison to two other different techniques, traditional association rule and eVZpro found that the integration of rules and similarity measures allow only the most appropriate URLs to be recommended and thus increase the efficiency of the Web page recommendation engine. 2005-03 Thesis http://eprints.utm.my/id/eprint/4291/ http://eprints.utm.my/id/eprint/4291/1/MohdHanafiAhmadHijaziMFSKSM2005.pdf application/pdf en public masters Universiti Teknologi Malaysia, Faculty of Computer Science and Information System Faculty of Computer Science and Information System
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic QA75 Electronic computers
Computer science
spellingShingle QA75 Electronic computers
Computer science
Ahmad Hijazi, Mohd. Hanafi
Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
description The continuous growth of the information on the Internet makes it necessary for users to be provided with a convenient and yet accurate tools to capture the information needed. Web usage mining has gained more popularity among researchers in discovering the users browsing behavior by mining the web server log that records all the users’ transactions activities. By applying it into the recommendation engine, Web personalization can be executed based on the discovered user’s behavior. Nevertheless, the efficiency of the generated recommendations is still an issue for researchers. This thesis is focusing on the development of a usage model for predictions based on association rule and similarity measures, named ARsim. Additional parameter was used to measure the similarities between URLs, which is the time user spent on a particular page. To generate the final recommendation, similarity between URLs contained in the active user profile was calculated upon the matched Web usage profiles and finally the top- N most similar URLs are then recommended to the user. Three evaluation metrics, which is commonly used by other researchers for evaluation of Web page recommendation model, was applied to evaluate the efficacy of ARsim, namely precision, coverage and F1. Comparison to two other different techniques, traditional association rule and eVZpro found that the integration of rules and similarity measures allow only the most appropriate URLs to be recommended and thus increase the efficiency of the Web page recommendation engine.
format Thesis
qualification_level Master's degree
author Ahmad Hijazi, Mohd. Hanafi
author_facet Ahmad Hijazi, Mohd. Hanafi
author_sort Ahmad Hijazi, Mohd. Hanafi
title Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_short Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_full Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_fullStr Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_full_unstemmed Pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
title_sort pemodelan rekomendasi halaman web berasaskan teknik perlombongan data
granting_institution Universiti Teknologi Malaysia, Faculty of Computer Science and Information System
granting_department Faculty of Computer Science and Information System
publishDate 2005
url http://eprints.utm.my/id/eprint/4291/1/MohdHanafiAhmadHijaziMFSKSM2005.pdf
_version_ 1747814508408078336