Offline handwriting recognition using Artificial Neural Network and Hidden Markov Model
Cursive handwriting is the most natural way for humans to communicate and record information. The developments of automatic systems that are capable of recognizing human handwritings offer a new way of improving human-computer interface and of enabling computers to perform repetitive tasks of readin...
محفوظ في:
المؤلف الرئيسي: | Tay, Yong Haur |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2002
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/4393/1/TayYongHaurPFKE2002.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Malay continuous speech recognition using continuous density hidden Markov model
بواسطة: Ting, Chee Ming
منشور في: (2007) -
Offline signature verification based on improved extracted features using neural network
بواسطة: Hussein, Karrar Neamah
منشور في: (2014) -
Development of a room recognition system using a catadioptric sensor and artificial neural network
بواسطة: Su, Eileen Lee Ming
منشور في: (2006) -
Detection of arcing fault in underground distribution cable using artificial neural network
بواسطة: Chan, Wei Kian
منشور في: (2004) -
Modeling for viscoelastic behaviors of magnetorheological elastomer using single hidden layer feed-forward neural network approaches
بواسطة: Saharuddin, Kasma Diana
منشور في: (2022)