Offline handwriting recognition using Artificial Neural Network and Hidden Markov Model
Cursive handwriting is the most natural way for humans to communicate and record information. The developments of automatic systems that are capable of recognizing human handwritings offer a new way of improving human-computer interface and of enabling computers to perform repetitive tasks of readin...
Saved in:
主要作者: | Tay, Yong Haur |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2002
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/4393/1/TayYongHaurPFKE2002.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Malay continuous speech recognition using continuous density hidden Markov model
由: Ting, Chee Ming
出版: (2007) -
Offline signature verification based on improved extracted features using neural network
由: Hussein, Karrar Neamah
出版: (2014) -
Development of a room recognition system using a catadioptric sensor and artificial neural network
由: Su, Eileen Lee Ming
出版: (2006) -
Detection of arcing fault in underground distribution cable using artificial neural network
由: Chan, Wei Kian
出版: (2004) -
Modeling for viscoelastic behaviors of magnetorheological elastomer using single hidden layer feed-forward neural network approaches
由: Saharuddin, Kasma Diana
出版: (2022)