Missing data problem in random electrocardiogram signal processing

Basically, signals are the entities that convey information and biomedical signals are the signals that carry information about the physiological process of organisms. Electrocardiogram (ECG) signal or known as heart signal is the signal that contains information about electrical activities in the h...

Full description

Saved in:
Bibliographic Details
Main Author: Gan, Thiam Yee
Format: Thesis
Language:English
Published: 2014
Subjects:
Online Access:http://eprints.utm.my/id/eprint/48531/1/GanThiamYeeMFS2014.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utm-ep.48531
record_format uketd_dc
spelling my-utm-ep.485312017-07-27T04:59:18Z Missing data problem in random electrocardiogram signal processing 2014 Gan, Thiam Yee RC Internal medicine Basically, signals are the entities that convey information and biomedical signals are the signals that carry information about the physiological process of organisms. Electrocardiogram (ECG) signal or known as heart signal is the signal that contains information about electrical activities in the heart. Since physiological signal are generated at low values and devices advancements are not sufficient to detect these small values perfectly, these signal tends to be missing from the record. As the noise interferes the signal at the same time, raw signal is practically unreliable to be interpreted directly. Hence, the random signal processing is required to obtain the signal as precise as possible. In this study, the missing probabilities of signal missingness were set to 0.1 at high values and 0.3 at low values. The noise to be reduced is Gaussian noise with zero mean and standard deviation 0.01 mV. A few methods have been applied to estimate the missing signal, including single mean imputation, empirical conditional mean imputation and Holt-Winters exponential smoothing. For noise filtering, the approach used is the Finite Impulse Response (FIR) Wiener filter. The study finds that the empirical conditional mean imputation is the best method among the three to estimate missing signal due to its accuracy, adequacy and simplicity. However, it appears that the FIR Wiener filter does not compatible with the estimation from empirical conditional mean imputation and does not further improve the signal quality by removing noise in general. 2014 Thesis http://eprints.utm.my/id/eprint/48531/ http://eprints.utm.my/id/eprint/48531/1/GanThiamYeeMFS2014.pdf application/pdf en public http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:78023?queryType=vitalDismax&query=Missing+data+problem+in+random+electrocardiogram+signal+processing&public=true masters Universiti Teknologi Malaysia, Faculty of Science Faculty of Science
institution Universiti Teknologi Malaysia
collection UTM Institutional Repository
language English
topic RC Internal medicine
spellingShingle RC Internal medicine
Gan, Thiam Yee
Missing data problem in random electrocardiogram signal processing
description Basically, signals are the entities that convey information and biomedical signals are the signals that carry information about the physiological process of organisms. Electrocardiogram (ECG) signal or known as heart signal is the signal that contains information about electrical activities in the heart. Since physiological signal are generated at low values and devices advancements are not sufficient to detect these small values perfectly, these signal tends to be missing from the record. As the noise interferes the signal at the same time, raw signal is practically unreliable to be interpreted directly. Hence, the random signal processing is required to obtain the signal as precise as possible. In this study, the missing probabilities of signal missingness were set to 0.1 at high values and 0.3 at low values. The noise to be reduced is Gaussian noise with zero mean and standard deviation 0.01 mV. A few methods have been applied to estimate the missing signal, including single mean imputation, empirical conditional mean imputation and Holt-Winters exponential smoothing. For noise filtering, the approach used is the Finite Impulse Response (FIR) Wiener filter. The study finds that the empirical conditional mean imputation is the best method among the three to estimate missing signal due to its accuracy, adequacy and simplicity. However, it appears that the FIR Wiener filter does not compatible with the estimation from empirical conditional mean imputation and does not further improve the signal quality by removing noise in general.
format Thesis
qualification_level Master's degree
author Gan, Thiam Yee
author_facet Gan, Thiam Yee
author_sort Gan, Thiam Yee
title Missing data problem in random electrocardiogram signal processing
title_short Missing data problem in random electrocardiogram signal processing
title_full Missing data problem in random electrocardiogram signal processing
title_fullStr Missing data problem in random electrocardiogram signal processing
title_full_unstemmed Missing data problem in random electrocardiogram signal processing
title_sort missing data problem in random electrocardiogram signal processing
granting_institution Universiti Teknologi Malaysia, Faculty of Science
granting_department Faculty of Science
publishDate 2014
url http://eprints.utm.my/id/eprint/48531/1/GanThiamYeeMFS2014.pdf
_version_ 1747817413149196288