Variable selection using least angle regression

The least-angle regression (LARS) (Efrron, Hastie, Johnstone, and Tibshirani, 2004) is a technique used with the absence of data that consist of many independent variables. Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates. Then the LA...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Wan Mohd. Rosly, Wan Nur Shaziayani
التنسيق: أطروحة
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/48703/25/WanNurShaziayaniMFS2011.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The least-angle regression (LARS) (Efrron, Hastie, Johnstone, and Tibshirani, 2004) is a technique used with the absence of data that consist of many independent variables. Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates. Then the LARS algorithm provides a means of producing an estimate of which variables to include, as well as their coefficients. The MATLAB programming codes are developed in order to solve the algorithms systematically and effortlessly.