K-means algorithm via preprocessing technique and singular value decomposition for high dimension datasets
Data clustering is an unsupervised classification method aimed at creating groups of objects, or clusters that are distinct. Among the clustering techniques, Kmeans is the most widely used technique. Two issues are prominent in creating a Kmeans clustering algorithm; the optimal number of clusters a...
Saved in:
主要作者: | Usman, Dauda |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2014
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/77643/1/DaudaUsmanPFS2014.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Statistical data preprocessing methods in distance functions to enhance k-means clustering algorithm
由: Dalatu, Paul Inuwa
出版: (2018) -
RTL implementation of one-sided jacobi algorithm for singular value decomposition
由: Wan Mohamad, Wan Ahmad Zainie
出版: (2016) -
Enhancement of parallel K-means algorithm for clustering big datasets
由: Ashabi, Ardavan
出版: (2022) -
Location and tracking of sources through preprocessing and eigen-decomposition /
由: Ho, Hock Beng
出版: (1996) -
Imputation of incomplete software metric database using hybrid of nearest neighbour and modified singular value decomposition (NN-MSVD) algorithm /
由: Olanrewaju, Rashidah Funke
出版: (2006)