Empirical mode decomposition with least square support vector machine model for river flow forecasting
Accurate information on future river flow is a fundamental key for water resources planning, and management. Traditionally, single models have been introduced to predict the future value of river flow. However, single models may not be suitable to capture the nonlinear and non-stationary nature of t...
Saved in:
主要作者: | Ismail, Shuhaida |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2016
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/77916/1/ShuhaidaIsmailPFS2016.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Self organizing map and least square support vector machine method for river flow modelling
由: Ismail, Shuhaida
出版: (2011) -
Short-term load forecasting using least squares support vector machine / Abdul Zamer Afiq Abd Razak
由: Abd Razak, Abdul Zamer Afiq
出版: (2014) -
Combined empirical mode decomposition and dynamic regression model for forecasting electricity load demand
由: Akrom, Nuramirah
出版: (2015) -
Forecasting Performance Of Nonlinear And Nonstationary Stock Market Data Using Empirical Mode Decomposition
由: Awajan, Ahmad Mohammad Al-Abd
出版: (2018) -
Dengue Outbreak Prediction Using Least Squares Support Vector Machines (LS-SVM)
由: Zuriani, Mustaffa
出版: (2010)