Empirical mode decomposition with least square support vector machine model for river flow forecasting
Accurate information on future river flow is a fundamental key for water resources planning, and management. Traditionally, single models have been introduced to predict the future value of river flow. However, single models may not be suitable to capture the nonlinear and non-stationary nature of t...
محفوظ في:
المؤلف الرئيسي: | Ismail, Shuhaida |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/77916/1/ShuhaidaIsmailPFS2016.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Self organizing map and least square support vector machine method for river flow modelling
بواسطة: Ismail, Shuhaida
منشور في: (2011) -
Short-term load forecasting using least squares support vector machine / Abdul Zamer Afiq Abd Razak
بواسطة: Abd Razak, Abdul Zamer Afiq
منشور في: (2014) -
Combined empirical mode decomposition and dynamic regression model for forecasting electricity load demand
بواسطة: Akrom, Nuramirah
منشور في: (2015) -
Forecasting Performance Of Nonlinear And Nonstationary Stock Market Data Using Empirical Mode Decomposition
بواسطة: Awajan, Ahmad Mohammad Al-Abd
منشور في: (2018) -
Dengue Outbreak Prediction Using Least Squares Support Vector Machines (LS-SVM)
بواسطة: Zuriani, Mustaffa
منشور في: (2010)