New approaches in estimating linear regression model parameters in the presence of multicollinearity and outliers
In multiple linear regression models, the ordinary least squares (OLS) method has been the most popular technique for estimating parameters of model due to its optimal properties and ease of calculation. OLS estimator may fail when the assumption of independence is violated. This assumption can be v...
Saved in:
主要作者: | Al-Mash, Mohammad Sabry Abo |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2017
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/78208/1/MohammadSabryAboMFS2017.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Linear regression for data having multicollinearity, heteroscedasticity and outliers
由: Rasheed, Bello AbdulKadiri
出版: (2017) -
A robust ridge regression estimator in the presence of outliers and multicollinearity /
由: Marina Zahari
出版: (2001) -
Robust techniques for linear regression with multicollinearity and outliers
由: Mohammed, Mohammed Abdulhussein
出版: (2016) -
A Robust Ridge Regression For Multicollinearity Problem In The Presence Of Outliers In The Data
由: Nur Aqilah Binti Ferdaos -
Robust diagnostic and estimation for binary logistic regression model in the presence of multicollinearity and high leverage points
由: Ariffin @ Mat Zin, Syaiba Balqish
出版: (2018)