Hybrid fuzzy multi-objective particle swarm optimization for taxonomy extraction
Ontology learning refers to an automatic extraction of ontology to produce the ontology learning layer cake which consists of five kinds of output: terms, concepts, taxonomy relations, non-taxonomy relations and axioms. Term extraction is a prerequisite for all aspects of ontology learning. It is th...
Saved in:
主要作者: | Syafrullah, Mohammad |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2015
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/78211/1/MohammadSyafrullahPFC2015.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Automatic brain tumor segmentation method using improved fuzzy C-means and fuzzy particle swarm optimization
由: Zanganeh, Saeed
出版: (2014) -
Modeling medical doctor rostering using hybrid genetic algorithm-particle swarm optimization
由: Zainudin, Zanariah
出版: (2014) -
Midrange exploration exploitation searching particle swarm optimization with HSV-template matching for crowded environment object tracking
由: Nurul Izzatie Husna, Muhamad Fauzi
出版: (2023) -
Hybrid particle swarm optimization-constraint-based reasoning in solving university course timetabling problem
由: Ho, Sheau Fen @ Irene
出版: (2010) -
Hybrid particle swarm optimization-artificial neural network gender classifier for trabecular bone morphology
由: Sahadun, Nur Afiqah
出版: (2014)