Learning automata and sigma imperialist competitive algorithm for optimization of single and multi-objective functions
Evolutionary Algorithms (EA) consist of several heuristics which are able to solve optimisation tasks by imitating some aspects of natural evolution. Two widely-used EAs, namely Harmony Search (HS) and Imperialist Competitive Algorithm (ICA), are considered for improving single objective EA and Mult...
محفوظ في:
المؤلف الرئيسي: | Enayatifar, Rasul |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/78495/1/RasulEnayatifarPFC2014.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Proportional-integral control optimization using imperialist competitive algorithm
بواسطة: Soheilirad, Mohammadsoroush
منشور في: (2012) -
Memetic multi-objective evolutionary algorithms of radial basis function network for classification problems
بواسطة: Qasem, Sultan Noman
منشور في: (2011) -
A Multi-objective Evolutionary Algorithm Based On Decomposition For Continuous Optimization Using A Step-function Technique
بواسطة: Chuah, How Siang
منشور في: (2022) -
Enhanced Micro Genetic
Algorithm-Based Models For
Multi-Objective Optimization
بواسطة: Tan, Choo Jun
منشور في: (2014) -
Multi-objective evolutionary algorithms of spiking neural networks
بواسطة: Saleh, Abdulrazak Yahya
منشور في: (2015)